Multi-Frequency Eddy Current Testing of Copper Based Magnetic Alloys Using the Principal Component Analysis

  • А.В. Егоров Altai State University (Barnaul, Russia) Email: egav@bk.ru
  • В.В. Поляков Altai State University (Barnaul, Russia); Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS (Tomsk, Russia) Email: pvv@asu.ru
  • Я.И. Борцова Altai State University (Barnaul, Russia) Email: server2791@mail.ru
  • С.В. Кучерявский Aalborg University Email: svkucheryavski@gmail.com
Keywords: eddy current method, testing of materials, magnetic materials, copper alloys, multivariate data analysis, principal component analysis

Abstract

  Multi-frequency eddy current measurements are utilized to conduct non-destructive testing of physical and geometric characteristics of products made from magnetic metallic materials. Using the example of magnetic bronzes, the joint effect of several parameters like magnetic permeability, electrical conductivity, the thickness of magnetic material, and the value of the gap between the material surface and the sensor on experimental hodographs of the “controlled sample - eddy current sensor” system is investigated. The influence of magnetic properties on hodograph lines is studied by comparing the results with hodographs of a non-magnetic copper alloy. The measurement results (experimental hodographs) are subjected to mathematical processing using the principal component method to separate the main influencing factors. Thus, the entire set of experimental data describing the hodograph of a particular sample is considered as the coordinates of one point of a multidimensional space. The results of numerical calculations are presented in the form of projections of the plane of the first principal components. This provides a visual separation of simultaneously acting competing factors manifested in the formation of clustered groups of points describing samples with similar physical and geometric properties on the planes of the main components. Obtained results demonstrate that application of the principal component method has expanded the capabilities of eddy current testing of magnetic metallic materials. The proposed approach can be used for development of new eddy current devices for nondestructive diagnosis of products and structures.osis of products and structures.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Garcia-Martin J., Gomez-Gil J., Vazquez-Sanchez E. Non-Destructive Techniques Based on Eddy Current Testing // Sensors (Basel). 2011. Vol. 11(3).

Егоров А.В., Поляков В.В., Иваков С.В. Измерительно-вычислительный комплекс для определения удельной электропроводности и магнитной проницаемости методом вихревых токов // Ползуновский вестник. 2010. № 2.

Поляков В.В., Егоров А.В. Магнитные и электрические характеристики пористых ферромагнетиков // Доклады Академии наук. 1995. Т. 344, № 4.

Lulu Tian, Yuhua Cheng, Chun Yin, Xuegang Huang, 1 Bo Zhang, and Libing Ba. Data-Driven Method for the Measurement of Thickness/Depth Using Pulsed Eddy Current // Sensors and Materials. 2017. Vol. 29, No9.

Yang H.C., Tai C.C. Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate // Measurement Science and Technology. 2002. Vol. 13.

Mercier D, Lesage J, Decoopman X, Chicot D. Eddy currents and hardness testing for evaluation of steel decarburizing // NDT E Int. 2006. №39.

Song Z, Yamada T, Shitara H, Takemura Y. Detection of Damage and Crack in Railhead by Using Eddy Current Testing // J. Electromagn. Anal. Appl. 2011. №3.

Zenglu Song, Tsutomu Yamada, Hideki Shitara, Yasushi Takemura. Detection of Damage and Crack in Railhead by Using Eddy Current Testing // Journal of Electromagnetic Analysis and Applications. 2011. № 3.

Sasi B., Rao B.PC., Jayakumar T., and Raj Baldev. Development of Eddy Current Test Procedure for Nondestructive Detection of Fatigue Cracks and Corrosion in Rivets of Air-intake Structures // Defence Science Journal, 2009. Vol. 59, No2.

Lingqi Li, Tsukada K., Hanasaki K., Zheng Liu. Fusion of multi-frequency eddy current signals-by using wavelet analysis method // Proceedings of the Fifth International Conference on Information Fusion. 2002. Vol. 1.

Egorov A.V., Polyakov V.V., Salita D.S., Kolubaev E.A., Psakhe S.G., Chernyavsky A.G., Vorobei I.V. Inspection of aluminum alloys by a multi-frequency eddy current method // Defence Technology. 2015. Т. 11, № 2.

Pedersen LB, K.-A. M, Zhengsheng Y. Eddy Current Testing of Thin Layers Using Co-planar Coils // Nondestruct. Eval. 2000. Vol. 12.

Esbensen K/H, Geladi P. Principal Component Analysis: Concept, Geometrical Interpretation, Mathematical Background, Algorithms, History, Practice. In: Brown E-CSD, Tauler R, and Beata Walczak, editors. Compr. Chemom. Oxford, 2009.

Comon P. Independent component analysis, A new concept? // Signal Processing. 1994. Vol. 36.

Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics // Chemom. Intell. Lab. Vol. 2001.

Егоров А.В., Поляков В.В. Вихретоковый контроль металлических материалов с помощью проекционных методов многомерного анализа данных // Дефектоскопия. 2018. №5.
Published
2019-03-06
How to Cite
Егоров А., Поляков В., Борцова Я., Кучерявский С. Multi-Frequency Eddy Current Testing of Copper Based Magnetic Alloys Using the Principal Component Analysis // Izvestiya of Altai State University, 2019, № 1(105). P. 22-27 DOI: 10.14258/izvasu(2019)1-02. URL: http://izvestiya.asu.ru/article/view/%282019%291-02.