On a Change in the Curvature of a Conformally Flat Metric under the Legendre Transformation
Abstract
It is known that the theory of conformally flat Riemannian metric is closely associated with pseudo-Euclidean geometry, due to the existence of the canonical isometric embedding conformally flat metric in pseudo-isotropic cone space. This fact was first noticed by H. Brinkmann, and later was used in the works of N. Kuyper. The geometry of homogeneous Riemannian manifolds with a conformally flat Riemannian metric was studied in the papers of A.D. Alekseevsky and B.N. Kimel’feld, in which their classification was given. In the inhomogeneous case such a classification does not exist, therefore, in the study of conformally flat Riemannian manifolds restrictions of various types are used: either on the dimension of the manifold, or on a topological structure, or on different types of Riemannian manifold curvatures of the conformally flat metric. In the last case, theorems on homogeneous Riemannian manifolds with a conformally flat metric of bounded one-dimensional curvature are well known, which were obtained by V.V. Slavsky and E.D. Rodionov. In this paper, we study the behavior of a one-dimensional curvature and the Ricci curvature under Legendre Transform of the conformally flat Riemannian metric. 10.14258/izvasu(2018)4-16Downloads
Metrics
References
Brinkmann H.W. On Riemann spaces conformal to Euclidean spaces // Proc. Nat. Acad. Sci. USA 9 (1923), 1–3.
Kuiper N.H. On conformally-flat spaces in large // Ann. of Math. - (2) 1949. - V. 50.
Kuiper N.H. On compact conformally Euclidean spaces of dimention >2 // Ann. of Math. - (2) 1950. - V. 52.
Кантор Б.Е., Франгулов С.А. Об изометричном погружении двумерных римановых многообразий в псевдоевклидово пространство // Мат. заметки. - 1984. - Т. 36, № 3.
Славский В.В. Конформно плоские метрики ограниченной кривизны на n-мерной сфере. Исследования по геометрии «в целом» и математическому анализу. — Новосибирск, 1987. — Т. 9.
Udo Hertrich-Jeromin. Introduction to Mobius Differential Geometry. London mathematical society lecture note series. — Cambridge University Press, 2003.
Решетняк Ю.Г. Теоремы устойчивости в геометрии и анализе. — Новосибирск, 1996.
Топоногов В.А. Дифференциальная геометрия кривых и поверхностей. — М., 2012.
Slavskii V.V. Conformally flat metrics and the geometry of the pseudo-Euclidean space // Siberian Math. J. — 35 (1994).— № 3.
Славский В.В. Оценка коэффициента квазиконформности области через кривизну квазигиперболической метрики // Сиб. мат. журн. — 1999. — Т. 40, № 4.
Славский В.В. Конформно-плоские метрики и псевдоевклидово пространство : автореф. ... дисс. докт. матем. наук. — Новосибирск, 2000.
Славский В.В. Геометрический подход в многомерной теории потенциала // Труды по анализу и геометрии. — Новосибирск, 2000.
Балащенко В.В., Никоноров Ю.Г., Родионов Е.Д., Славский В.В. Однородные пространства: теория и приложения : монография. — Ханты-Мансийск, 2008.
Картан Э. Риманова геометрия в ортогональном репере. — М., 1960.
Родионов Е.Д., Славский В.В. Одномерная секционная кривизна римановых многообразий // Доклады академии наук. — 2002. — Т. 387, № 4.
Nikonorov Yu.G., Rodionov E.D., Slavskii V.V. Geometry of homogeneoues Riemannian manifolds // Journal of Mathematical Scieces. — 2007. — V. 146, № 6.
Kurkina M.V., Rodionov E.D. and Slavskii V.V. Conformally Convex Functions and Conformally Flat Metrics of Nonnegative Curvature // Doklady Mathematics. — 2015. — V. 91, № 3.
Родионов Е.Д., Славский В.В. Полярное преобразование конформно-плоских метрик // Математические труды. — 2017. — Т. 20, № 2.
Copyright (c) 2018 М.В. Куркина
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).