Data Interpretation for Weather Extremes on the Basis of Quasiresonance Hypothesis of Blocking Formation
Abstract
The quasiresonance hypothesis is used among other approximations for theoretical study of blocking formation in the recent years. It is propose the magnification of quasistationary waves resulted by thermal and orographic inhomogenities of underlying surface through quasiresonance. In this paper authors perform the interpretation of reanalysis and satellite data for weather extremes situations on the basis of quasiresonance hypothesis that describs mechanism of amplification for amplitudes of quasistationary waves. Base on the analysis of atmospheric waves parameters the situations favorable for realization of this mechanism were selected and described. The spatial distribution of the meridional velocity of atmospheric wind in troposphere was derived to illustrate all considered weather extreme situations. In all cases the conditions necessary for quasiresonance amplification are performed for wave modes with zonal wave numbers. All the considered weather extremes situations exhibit amplitudes for monthly Fourier components that are about 1.5 SD from the 1980-2011 monthly climatology data for the meridional velocity for the corresponding wave numbers.
DOI 10.14258/izvasu(2018)4-06
Downloads
Metrics
References
Francis J. A., Vavrus Stephen J. Evidence for wavier jet stream in response to rapid Arctic warming // Environmental Research Letters. — 2015. — V. 10: 014005. D0I:10.1088/1748-9326/10/1/014005
Francis J.A., Skific N. Evidence linking rapid Arctic warming to mid-latitude weather patterns // Phil. Trans. A Math Phys Eng Sci. — 2015. — V. 373 (2045): 20140170. D0I:10.1098/rsta.2014.0170
Barnes E.A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes // Geophysical research letters. — 2013. — V. 40. D0I:10.1002/grl.50880
Screen J.A., Simmond I. Amplified mid-latitude planetary waves favour particular regional weather extrems. Nat. Clim. Change. — 2014. — V. 4. D0I:10.1038/nclimate2271
Cohen J.L., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J.A., Dethloff K., Entekhabi D., Overlandand J.E., Jones J. Resent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. — 2014 — V. 7. — D0I:10.1038/NGE02234
Petoukhov V. et al. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes // Proc. Natl. Acad. Sci. USA. — 2013. — V. 110. — D0I:10.1073/pnas.1222000110
Kornhuber K. et al. Detection of quasiresonant amplification of planetary waves and their connection to northern hemisphere summer heat extremes EGU General Assembly Conference Abstracts. — 2014. —V. 16: 15164.
Мохов И. И. Российские исследования в области атмосферных наук и метеорологии в 2011-2014 гг. // Известия Российской академии наук. Физика атмосферы и океана. — 2016. — Т. 52, № 2.
Педлоски Дж. Геофизическая гидродинамика. Т. 1, 2. — М., 1984.
Charney J. G., and Drazin P G. Propagation ofplanetary-scale disturbances from the lower into the upper atmosphere. J. Geophy. Res. —1961. — V. 66.
Dickinson R.E. Development of a Rossby wave critical level. J. Atmos. Sci. — 1970. —V. 27.
Copyright (c) 2018 К.Ю. Суковатов, Н.Н. Безуглова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).