Stability of Ice Cover Oscillations in a Channel Problem Solution with Initial Data
Abstract
In this paper, an initial-boundary problem of ice cover oscillations in an infinite channel caused by a moving load is considered within the linear theory of hydroelasticity. Mathematical model is based on a combined system of differential equations describing vertical deflection of the ice cover and motion of fluid in the channel. The ice cover is modeled by the equation of a thin viscoelastic plate. Viscoelastic properties of ice are modeled by the Kelvin-Voigt rheological law. The liquid in the channel is inviscid and incompressible. The relation between the viscoelastic and hydrodynamic parts of the problem is established by the linearized kinematic and dynamical conditions. The system of equations is closed by conditions of clamped edges for the plate on the walls of the channel, conditions of impermeability for the flow velocity potential, and damping conditions for the oscillations far away from the load. The investigation in this paper is devoted to the correctness of problems formulations described by combined equations of a viscoelastic plate and an ideal fluid. In section 1, the stability theorem for the classical solution of the initial boundary-value problem of viscoelastic oscillations of the ice cover in the channel with respect to initial data is proved. In section 2, the similar theorem is proved for elastic oscillations of the ice cover. Theorems are proved using energy estimation methods and special functional inequalities. Stability of described problems is studied for finite times.
DOI 10.14258/izvasu(2017)4-30
Downloads
Metrics
References
Squire V., Hosking R., Kerr A., Langhorne P. Moving loads on ice. — Kluwer Academic Publishers, 1996.
Hydroelasticity in marine technology. Edited by S. Malenica, N. Vladimir and I.Senjanovic. VIDICI d.o.o., 2015.
Sturova I.V. Unsteady three-dimensional sources in deep water with an elastic cover and their applications // J. Fluid Mech. — V. 730.— 2013.
Жесткая В.Д., Джабраилов М.Р. Численное решение задачи о движении нагрузки по ледяному покрову с трещиной // ПМТФ. — V. 49. — 2008. — № 3.
Шишмарев К.А. Математические вопросы моделирования взаимодействия ледового покрова и гидроупругих волн // Известия Алтайского гос. ун-та. — 2015. — № 1/1(85). DOI: 10.14258/izvasu(2015)1.1-22.
Шишмарев К.А. Постановка задачи о вязкоупругих колебаниях ледовой пластины в канале в результате движения нагрузки // Известия Алтайского гос. ун-та. — 2015. — № 1/2(85). DOI: 10.14258/izvasu(2015)1.2-35.
Matiushina A.A., Pogorelova A.V., Kozin V.M. Effect of Impact Load on the Ice Cover During the Landing of an Airplane // International Journal of Offshore and Polar Engineering. — V. 26. — 2016.— № 1.
Korobkin A., Khabakhpasheva T., Papin A. Waves propagating along a channel with ice cover // European Journal of Mechanics B/Fluids. — V. 47. — 2014.
Shishmarev K., Khabakhpasheva T., Korobkin A. The response of ice cover to a load moving along a frozen channel // Applied Ocean Research. — V. 59. — 2016.
Brocklehurst P., Korobkin A.A., Parau E.I. Interaction of hydro-elastic waves with a vertical wall // Journal Enginering Mathematic. — V. 68. — 2010.
Batyaev E.A., Khabakhpasheva T.I. Hydroelastic waves in channel with free ice cover. Fluid Dynamics, 2015, №6.
Ткачева Л.А. Колебания цилиндрического тела, погруженного в жидкость, при наличии ледяного покрова // ПМТФ. — Т. 56. — 2012, № 6.
Шишмарев К.А. Математическая модель взаимодействия ледового покрова и гидродинамического диполя в канале // Известия Алтайского гос. ун-та. — 2017. — № 1 (93). DOI: 10.14258/izvasu(2017)1-30.
Vaigant V.A., Papin A.A. On the uniqueness of the solution of the flow problem with a given vortex // JMathematical notes. — 2014. — V. 96(6).
Хлуднев А.М. Об изгибе упругой пластины с отслоившимся тонким жестким включением // Сиб. журн. индустр. матем., — 2011. — V. 4(1).
Neustroeva N.V., Lazarev N.P. Junction problem for Euler-Bernoulli and Timoshenko elastic beams // ib. Elektron. Mat. Izv., V. 3. — 2016. — № 7.
Lu H., Sun L., Sun J. Existence of positive solutions to a non-positive elastic beam equation with both ends fixed // Boundary Value Problems. — 2012. — № 56.
Basson M., de Villiers M., van Rensburg N.F.J. Solvability of a Model for the Vibration of a Beam with a Damping Tip Body // Journal of Applied Mathematics. — 2014.
Copyright (c) 2017 К.А. Шишмарев
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).