Stability of Ice Cover Oscillations in a Channel Problem Solution with Initial Data

  • К.А. Шишмарев Altai State University (Barnaul, Russia) Email: shishmarev.k@mail.ru
Keywords: stability, initial-boundary value problem, ideal fluid, viscoelastic oscillations, ice cover, external load

Abstract

In this paper, an initial-boundary problem of ice cover oscillations in an infinite channel caused by a moving load is considered within the linear theory of hydroelasticity. Mathematical model is based on a combined system of differential equations describing vertical deflection of the ice cover and motion of fluid in the channel. The ice cover is modeled by the equation of a thin viscoelastic plate. Viscoelastic properties of ice are modeled by the Kelvin-Voigt rheological law. The liquid in the channel is inviscid and incompressible. The relation between the viscoelastic and hydrodynamic parts of the problem is established by the linearized kinematic and dynamical conditions. The system of equations is closed by conditions of clamped edges for the plate on the walls of the channel, conditions of impermeability for the flow velocity potential, and damping conditions for the oscillations far away from the load. The investigation in this paper is devoted to the correctness of problems formulations described by combined equations of a viscoelastic plate and an ideal fluid. In section 1, the stability theorem for the classical solution of the initial boundary-value problem of viscoelastic oscillations of the ice cover in the channel with respect to initial data is proved. In section 2, the similar theorem is proved for elastic oscillations of the ice cover. Theorems are proved using energy estimation methods and special functional inequalities. Stability of described problems is studied for finite times.

DOI 10.14258/izvasu(2017)4-30

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

К.А. Шишмарев, Altai State University (Barnaul, Russia)
старший преподаватель, аспирант факультета математики и информационных технологий

References

Squire V., Hosking R., Kerr A., Langhorne P. Moving loads on ice. — Kluwer Academic Publishers, 1996.

Hydroelasticity in marine technology. Edited by S. Malenica, N. Vladimir and I.Senjanovic. VIDICI d.o.o., 2015.

Sturova I.V. Unsteady three-dimensional sources in deep water with an elastic cover and their applications // J. Fluid Mech. — V. 730.— 2013.

Жесткая В.Д., Джабраилов М.Р. Численное решение задачи о движении нагрузки по ледяному покрову с трещиной // ПМТФ. — V. 49. — 2008. — № 3.

Шишмарев К.А. Математические вопросы моделирования взаимодействия ледового покрова и гидроупругих волн // Известия Алтайского гос. ун-та. — 2015. — № 1/1(85). DOI: 10.14258/izvasu(2015)1.1-22.

Шишмарев К.А. Постановка задачи о вязкоупругих колебаниях ледовой пластины в канале в результате движения нагрузки // Известия Алтайского гос. ун-та. — 2015. — № 1/2(85). DOI: 10.14258/izvasu(2015)1.2-35.

Matiushina A.A., Pogorelova A.V., Kozin V.M. Effect of Impact Load on the Ice Cover During the Landing of an Airplane // International Journal of Offshore and Polar Engineering. — V. 26. — 2016.— № 1.

Korobkin A., Khabakhpasheva T., Papin A. Waves propagating along a channel with ice cover // European Journal of Mechanics B/Fluids. — V. 47. — 2014.

Shishmarev K., Khabakhpasheva T., Korobkin A. The response of ice cover to a load moving along a frozen channel // Applied Ocean Research. — V. 59. — 2016.

Brocklehurst P., Korobkin A.A., Parau E.I. Interaction of hydro-elastic waves with a vertical wall // Journal Enginering Mathematic. — V. 68. — 2010.

Batyaev E.A., Khabakhpasheva T.I. Hydroelastic waves in channel with free ice cover. Fluid Dynamics, 2015, №6.

Ткачева Л.А. Колебания цилиндрического тела, погруженного в жидкость, при наличии ледяного покрова // ПМТФ. — Т. 56. — 2012, № 6.

Шишмарев К.А. Математическая модель взаимодействия ледового покрова и гидродинамического диполя в канале // Известия Алтайского гос. ун-та. — 2017. — № 1 (93). DOI: 10.14258/izvasu(2017)1-30.

Vaigant V.A., Papin A.A. On the uniqueness of the solution of the flow problem with a given vortex // JMathematical notes. — 2014. — V. 96(6).

Хлуднев А.М. Об изгибе упругой пластины с отслоившимся тонким жестким включением // Сиб. журн. индустр. матем., — 2011. — V. 4(1).

Neustroeva N.V., Lazarev N.P. Junction problem for Euler-Bernoulli and Timoshenko elastic beams // ib. Elektron. Mat. Izv., V. 3. — 2016. — № 7.

Lu H., Sun L., Sun J. Existence of positive solutions to a non-positive elastic beam equation with both ends fixed // Boundary Value Problems. — 2012. — № 56.

Basson M., de Villiers M., van Rensburg N.F.J. Solvability of a Model for the Vibration of a Beam with a Damping Tip Body // Journal of Applied Mathematics. — 2014.

How to Cite
Шишмарев К. Stability of Ice Cover Oscillations in a Channel Problem Solution with Initial Data // Izvestiya of Altai State University, 1, № 4(96) DOI: 10.14258/izvasu(2017)4-30. URL: http://izvestiya.asu.ru/article/view/%282017%294-30.