Numerical Study of a Problem of Fluid Filtration in a Thin Poroelastic Layer
Abstract
The paper presents results of a numerical study of a mathematical model of viscous fluid filtration in a poroelastic medium with viscoelastic properties. The focus of this research is on model development, problem formulation, and elaboration of a numerical algorithm to solve this problem, as well as a preliminary analysis of numerical study results. The proposed model can be used in a study of processes that occur in the ice cover. This approach treats the ice as a biphasic medium consisting of a liquid (water) phase and a solid (ice) phase being a solid elastic ice skeleton with viscoelastic properties. Thus, the ice cover has properties of a non-Newtonian fluid in this model, and phase transitions and temperature changes are out of concern. A small time parameter is introduced for the process of nondimensionalizing of the original equation system. After passing to the limit (for slow processes), the equation system describes the solid skeleton as a medium with elastic properties greater than viscous. Test numerical calculations are performed, and the field of velocities, porosity, and critical stress values are obtained.Downloads
Metrics
References
Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. - Новосибирск, 1983.
Bear J. Dynamics of Fluids in Porous Media. - Elsevier, New York, 1972.
Connolly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelastic rock, Geodin. Acta. - 1998. - № 11.
Domenico P.A. and Schwartz F.W., Phisical and Chemical Hydrogeology, Jhon Wiley. - New York, 1990.
Fowler A.C., Yang X. Pressure solution and viscous compaction in sedimentary basins // J. Geophys. Res. - 104, 12,989-12,997, 1999.
Birchwood R.A., Turcotte D.L. A unified approach to geopressuring, low-permeability zone formation, and secondary porosity generation in sedimentary basins // J. Geophys. Res. 99, 20,05120,058, - 1994.
Fowler A.C. A compaction model for melt transport in the Earth’s asthenosphere, part 1, the basic model, in Magma Transport and Storage, edited by M.P. Ryan, Jhon Wiley. - New York, 1990.
Mc.Kzenzie D.P. The generation and compaction of partial melts // J. Petrol., 25, 713-765, 1984.
Morency C., Huismans R.S., Beaumont C., Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Research. - 2007. - Vol. 112.
Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration in poroelastic media // Journal of Physics: Conference Series. - 2016. - Т. 722, № 1.
Tokareva M.A. Localization of solutions of the equations of filtration in poroelastic medium // Журнал Сибирского федерального ун-та. Серия: Математика и физика. - 2015. - Т. 8, № 4.
Токарева М.А. Двумерная задача фильтрации в тонком пороупругом слое // Известия Алтайского гос. ун-та. - 2013. - № 1-1 (77).
Папин А.А., Подладчиков Ю.Ю. Изотермическое движение двух несмешивающихся жидкостей в пороупругой среде // Известия Алтайского гос. ун-та. - 2015. - Вып. 1/2. D0I:10.14258/izvasu(2015)1.2-24
Папин А.А., Сибин А.Н. Автомодельное решение задачи поршневого вытеснения жидкостей в пороупругой среде // Известия Алтайского гос. ун-та. - 2016. - № 1 (89). DOI: 10.14258/izvasu(2016)1-27
Папин А.А., Сибин А.Н. О разрешимости первой краевой задачи для одномерных уравнений внутренней эрозии // Известия Алтайского гос. ун-та. - 2015. - Вып. 1/2 (85). D0I:10.14258/izvasu(2015)1.2-25
Папин А.А. Существование решения «в целом» уравнений одномерного неизотермического движения двухфазной смеси. I. результаты о разрешимости // Сибирский журнал индустриальной математики. - 2006. - Т. IX, № 3.
Калиткин Н. Н. Численные методы. - М., 1978.
Самарский А.А. Введение в теорию разностных схем. - М. 1971.
Shishmarev K., Khabakhpasheva T., Korobkin A. The response of ice cover to a load moving along a frozen channel. Applied Ocean Research 59 (2016) 313-326.
Шишмарев К.А. Постановка задачи о вязкоупругих колебаниях ледовой пластины в канале в результате движения нагрузки. Известия Алтайского гос. ун-та. - 2015. - Вып. 1/2 (85). D0I:10.14258/izvasu(2015)1.2-35
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).