Generalized Harmonic Series on Hyperreal Structures in the AST

  • С.В. Дронов Altai State University Email: dsv@math.asu.ru
Keywords: alternative sets theory, hyperreal structures, harmonic series, numerical series convergence

Abstract

A most useful applications the Alternative Set Theory gets in studying several classical problems of calculus from a fresh point of view. Here, the class of all real numbers is replaced by a hyperreal structure based on some initial segment of natural numbers class. This segment must have more or less degree of uncertainty. It represents some horizon and is called a cut. This hyperreal structure inherits some properties of the real numbers, and some not. We investigate the relation of inherited properties with the uncertainty degree of the main cut of the structure. In this paper, an attempt to extrapolate the theory of numerical series summing to the hyperreal structures is presented. In particular, the classical theorem of comparison for numerical series is verified. The main result of the research is related with the so-called generalized harmonic series - the series of the type ∑ n-p. We show that if the main cut is closed with respect to the multiplication of its elements, then, roughly speaking, the series converges for p > 1. If the cut is additive but not multiplicative then it converges for p > 2 only, which is rather surprising. This can be used to characterize a degree of uncertainty of the cut by the minimal p for which the series of the investigated type converges on the correspondent hyperreal structure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Stewart J. Calculus: Early Transcendentals. - N.Y., 2014.

Хренников А.Ю. Суперанализ. - М., 2014.

Вопенка П. Альтернативная теория множеств. Новый взгляд на бесконечность. - Новосибирск, 2004.

Вопенка П. Математика в альтернативной теории множеств. - М., 1983.

Kalina M., Zlatos P. Arithmetic of cuts and cuts of classes // Comment. Math. Univ. Carolinae. -1988. - № 29.

Kalina M., Zlatos P. Cuts of real classes. // Comment. Math. Univ. Carolinae. - 1989. - № 30.

Sochor A. Addition of initial segments I, II. // Comment. Math. Univ. Carolinae. - 1988. - № 29.

Дронов С.В. О пределах монотонных последовательностей в AST. // Известия Алтайского гос. ун-та. - 2016. - №1(89). DOI:10.14258/izvasu(2016)1-19.

Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления : в 3 т. - М., 2016.

Дронов С.В. О свойстве фундаментальности сегментов класса натуральных чисел // Известия Алтайского гос. ун-та. - 2009. - № 1/1.

How to Cite
Дронов С. Generalized Harmonic Series on Hyperreal Structures in the AST // Izvestiya of Altai State University, 1, № 1(93) DOI: 10.14258/izvasu(2017)1-141. URL: http://izvestiya.asu.ru/article/view/%282017%291-141.