Structural Condition of Detonation Nanodiamonds under High Pressure High Temperature Sintering

  • В.А. Плотников Altai State University; Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS Email: plotnikov@phys.asu.ru
  • Д.Г. Богданов Altai State University Email: bogdanov.d.g@mail.ru
  • А.С. Богданов Altai State University Email: alexsandr-bogdanov@mail.ru
  • С.В. Макаров Altai State University Email: Makarov@phys.asu.ru
  • В.Г. Винс VELMAN LCC Email: vgvins@gmail.com
Keywords: detonation nanodiamond, impurity atoms, impurity concentration, high pressure high temperature sintering

Abstract

The experimental results of investigation of nanostructured diamond materials obtained by high-pressure high-temperature sintering of detonation nanodiamonds are presented. High-pressure high-temperature sintering of diamond nanoparticles provides solid polycrystalline aggregates. The value of polycrystalline aggregate microhardness was 9,1 GPa. Sintering of detonation nanodiamonds at the pressure of 5 GPa and the temperature of 1100-1200°C reduces the concentration of impurity atoms. Sintering is accompanied by a small growth of nanoparticles from 4,5 nm to 5,2 nm. It is demonstrated that the decrease in a concentration of impurity atoms is a result of temperature and pressure effects on detonation nanodiamonds. In conclusion, the assumption is made that this effect is associated with an increase of impurity atoms diffusion mobility and the formation of areas of impurity atoms excessive concentration. The formation of such areas reduces the impurity concentration on the borders of the diamond cores.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Углерод: фундаментальные проблемы науки, материаловедение, технология : сборник тезисов докладов VIII Междунар. конф. - Троицк, 2012.

Wentian Gu, Nicholas Peters, Gleb Yushin Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Liion electrochemical energy storage devices // Carbon. - 2013. - Vol. 53.

Лямкин А.И. Получение алмазов из взрывчатых веществ // ДАН СССР. - 1988. - Т. 302, № 3.

Plotnikov V.A., Makarov S.V., Bogdanov D.G., Bogdanov A.S. // AIP Conf. Proc. 1785, 040045-1-040045-4.

Долматов В.Ю. К вопросу об элементном составе и кристаллохимических параметрах детонационных наноалмазов // Сверхтвердые материалы. - 2009. - № 3.

Витязь П.А. Наноалмазы детонационного синтеза: получение и применение. - Минск, 2013.

Чепуров А.И., Федоров И.И., Сонин В.М. Экспериментальное моделирование процессов алмазообразования. - Новосибирск, 1997.

Гинье А. Рентгенография кристаллов. Теория и практика. - М., 1961.

Gaebel T., Bradac C., Chen J., Say J.M., Brown L., Hemmer P., Rabeau J.R. Size-reduction of nanodiamonds via air oxidation // Diamond & Related Materials. - 2012. - Vol. 21.

Плотников В.А., Богданов Д.Г, Макаров С.В. Детонационный наноалмаз. - Барнаул, 2014.

How to Cite
Плотников В., Богданов Д., Богданов А., Макаров С., Винс В. Structural Condition of Detonation Nanodiamonds under High Pressure High Temperature Sintering // Izvestiya of Altai State University, 1, № 1(93) DOI: 10.14258/izvasu(2017)1-07. URL: http://izvestiya.asu.ru/article/view/%282017%291-07.