A Comparative Analysis of Non-cooperative Iris Recognition Techniques

  • И.В. Петров Altai State University (Barnaul, Russia) Email: PetrovIV90@gmail.com
  • Н.Н. Минакова Altai State University (Barnaul, Russia) Email: minakova@asu.ru
Keywords: non-cooperative recognition, iris, biometrics, personal identification, information system

Abstract

The paper analyzes the existing localization methods in the context of non-cooperative identification. There are many advantages of such systems like usability, capacity increase, possibility of being hidden and undetected for security reasons, etc. The main problem is the poor quality of biometric data and the need for their rapid processing that requires special algorithms for processing of biometric data. The iris of an eye (iris) is currently the most promising data source for the non-cooperative systems. The iris can be scanned over a distance, has high information capacity, and remains unchanged with time. The most timeconsuming step besides the iris recognition is a localization process. The existing techniques of iris localization are selected and analyzed. Advantages and disadvantages of each technique are considered. It is shown that promising localization technique for non-cooperative systems is based on the active circuit technique. Despite its high computational complexity, the method allows to take into account a large number of factors related to the non-cooperative recognition. It is found that the success of the technique is determined by preliminary stages, for example, the correct specification of initial parameters.

DOI 10.14258/izvasu(2016)1-29

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

И.В. Петров, Altai State University (Barnaul, Russia)
аспирант физико-технического факультета
Н.Н. Минакова, Altai State University (Barnaul, Russia)
доктор физико-математических наук, профессор кафедры прикладной физики, электроники и информационной безопасности

References

Поляков В.В., Трушин В.А., Рева И.А. и др. Региональные аспекты технической и правой защиты информации: монография. — Барнаул, 2013.

Вязьмина А.Н., Жилин С.И. Алгоритмы распознавания лиц, устойчивые к вариациям освещения и геометрических характеристик // Труды молодых ученых Алтайского гос. ун-та. — 2013. — № 10.

Третьяков И.Н., Минакова Н.Н. Алгоритм разграничения доступа по радужной оболочке глаза для решения задач контроля доступа к информационным ресурсам // Доклады Томского гос. ун-та систем управления и радиоэлектроники. — 2010. — № 1–1.

Daugman J. How Iris Recognition Works // Circuits and Systems for Video Technology, IEEE Transactions on Circuits and Systems for Video Technology. — 2004. — № 1 (14).

Tan T., He Z., Sun Z. Efficient and Robust Segmentation of Noisy Iris Images for Non-cooperative Iris Recognition // Image and Vision Computing. — 2010. — № 2 (28).

Illingworth J., Kittler J. A Survey of the Hough Transform // Computer Vision, Graphics, and Image Processing. — 1988. — № 1 (44).

Kass M., Witkin A., Terzopoulos D. Snakes: Active Contour Models // International Journal of Computer Vision. — 1988. — № 4 (1).

Daugman J. New Methods in Iris Recognition // IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics. — 2007. — № 5 (37).

He Z., Tan T., Sun Z. Iris Localization via Pulling and Pushing // 18th International Conference on Pattern Recognition (ICPR’06). — 2006. — № 1.

Минакова Н.Н., Петров И.В. Информационная система анализа структуры радужной оболочки глаза // Ползуновский вестник. — 2012. — № 3/2.

Hannani A.El., Petrovska-Delacrétaz D., Fauve B., Mayoue A., Mason Guide J. To Biometric Reference Systems and Performance Evaluation // Springer Science & Business Media. — 2009.

Proenc H., Alexandre L.А. UBIRIS: A Noisy Iris Image Database // Symposium A Quarterly Journal In Modern Foreign Literatures. — 2005. — № 1.

How to Cite
Петров И., Минакова Н. A Comparative Analysis of Non-cooperative Iris Recognition Techniques // Izvestiya of Altai State University, 1, № 1(89) DOI: 10.14258/izvasu(2016)1-29016)1-01. URL: http://izvestiya.asu.ru/article/view/%282016%291-29016%291-01.