On the Spectrum of One-Dimensional Curvature operators on Three-Dimensional Lie Groups with Left-Invariant Lorentzian Metrics
Abstract
The problem of the establishing of connections between topology and curvature of a Riemannian manifold is one of the important problems of Riemannian geometry. J. Milnor, V.N. Berestovskii, E.D. Rodionov, V.V. Slavskii studies on the connection among the Ricci curvature, onedimensional curvature and topology of the homogeneous Riemannian space are well known in the homogeneous case . The curvatures of left-invariant Riemannian metrics on Lie groups were studied by J. Milnor. Namely, possible signatures of the Ricci operator were found in the case of three-dimensional Lie groups with a left-invariant Riemannian metric. Futher, O. Kowalski and S. Nikcevic found three-dimensional metric Lie groups and threedimensional Riemannian locally homogeneous spaces with prescribed values of the Ricci operator. Similar results were obtained by D.N. Oskorbin, E.D. Rodionov, O.P. Khromova for the onedimensional curvature operator and the sectional curvature operator. The situation is less clear in the case of leftinvariant Lorentzian metrics on Lie groups. In this paper, we consider the problem of the prescribed values for the operator of one-dimensional curvature. Besides, we define the possible signatures of the form of one-dimensional curvature on three-dimensional Lie groups with a left-invariant Lorenzian metric.
DOI 10.14258/izvasu(2016)1-21
Downloads
Metrics
References
Milnor J. Curvature of left invariant metric on Lie groups // Advances in mathematics. — 1976. — V. 21.
Кремлев А.Г., Никоноров Ю.Г. Сигнатура кривизны Риччи левоинвариантных римановых метрик на четырехмерных группах Ли. Унимодулярный случай // Матем. труды. — 2008. — Т. 11 (2).
Кремлев А.Г., Никоноров Ю.Г. Сигнатура кривизны Риччи левоинвариантных римановых метрик на четырехмерных группах Ли. Неунимодулярный случай // Матем. труды. — 2009. — Т. 12 (1).
Calvaruso G., Kowalski O. On the Ricci operator of locally homogeneous Lorentzian 3-manifolds // Cent. Eur. J. Math. — 2009. — V. 7 (1).
Kowalski O., Nikcevic S. On Ricci eigenvalues of locally homogeneous Riemann 3-manifolds // Geom. Dedicata. — 1996. — № 1.
Воронов Д.С., Гладунова О.П. Сигнатура оператора одномерной кривизны на трехмерных группах Ли с левоинвариантной римановой метрикой // Известия Алтайского гос. ун-та. — 2010. — № 1/2.
Родионов Е.Д., Славский В.В., Чибрикова Л.Н. Левоинвариантные лоренцевы метрики на 3-мерных группах Ли с нулевым квадратом длины тензора Схоутена-Вейля // Вестник АлтГПУ. — 2004. — № 4–3.
Никоноров Ю.Г., Родионов Е.Д., Славский В.В. Геометрия однородных римановых многообразий // Современная математика и ее приложения. — 2006. — Т. 37.
Пастухова С.В., Хромова О.П. О сигнатуре оператора тензора кривизны Риччи трехмерных групп Ли с левоинвариантной лоренцевой метрикой // Известия Алтйского гос. ун-та. — 2015. — № 1/2.
Пастухова С.В., Хромова О.П. О предписанных значениях спектров операторов тензоров Риччи и одномерной кривизны трехмерных групп Ли с левоинвариантными лоренцевыми метриками // Дни геометрии в Новосибирске — 2015 : тезисы Междунар. конф. — Новосибирск, 2015.
Calvaruso G. Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues // Diff. Geom. Appl. — 2008. — V. 26.
Kowalski O. Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues // Nagoya Math. J. — 1993. — V. 132.
Бессе А. Многообразия Эйнштейна: в 2 т. / пер. с англ. — М., 1990.
Родионов Е.Д., Славский В.В., Чибрикова Л.Н. Локально конформно однородные псевдоримановы пространства // Матем. труды. — 2006. — Т. 9 (1).
Calvaruso G. Homogeneous structures on three-dimensional Lorentzian manifolds // J. Geom. Phys. — 2007. — V. 57.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).