A Numerical Method for Calculation of Stationary Convective Liquid Flow with a Free Boundary

  • Т.В. Протопопова Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia) Email: tatiana@hydro.nsc.ru
Keywords: convection equations, free surface, finite-difference method

Abstract

In this paper, we investigate a numerical solution of the problem of viscous fluid convective flow in a twodimensional region with a free surface. The presence of a free surface poses a big problem for the numerical simulation since the surface position is unknown. It is necessary to determine the interface position both for the non-stationary problem and for the stationary case. The various numerical methods are used nowadays for solving such problems. We use the finite difference method and formulate the problem in terms of eddycurrent variables. This approach has several advantages when we consider a two-dimensional flow because, in this case, the continuity equation is fulfilled exactly. This is especially important when there is no outflow or inflow of liquid in the fluid flow domain. However, in the case of stream function and vorticity the form of the boundary conditions on the free surface is much more complicated. It is difficult to construct the efficient numerical algorithms. We propose the method, in which the free boundary is found by solving the boundary value problem for the ordinary differential equations of third order with nonlocal condition. The test calculations are carried out. The results demonstrate the effectiveness of the proposed method.

DOI 10.14258/izvasu(2015)1.2-27

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Т.В. Протопопова, Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia)
кандидат физико-математических наук, научный сотрудник 

References

Пухначев В.В. Движение вязкой жидкости со свободными границами : учебное пособие. - Новосибирск, 1989.

Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. - М., 1972.

Протопопова Т.В. Численные методы решения уравнений тепловой конвекции на основе уравнений Навье-Стокса : автореф. … дис. канд. физ.-мат. наук. - Новосибирск, 2001.

Непомнящий А.А., Тарунин Е.Л. Двухполевой метод расчета течений вязкой несжимаемой жидкости со свободной границей // Труды VI Всесоюзного семинара по численным методам механики вязкой несжимаемой жидкости. - Новосибирск, 1978.

Овчарова А.С. Численное моделирование деформации свободновисящих пленок под действием тепловой нагрузки // Вычислительные технологии. - 2007. - Т. 12, № 4.

Овчарова А.С. Метод решения термоконвективной задачи в многослойной среде с криволинейными границами раздела // Динамика сплошной среды. - Новосибирск, 1994. - Вып. 106.

Dorfler W., Goncharova O., Kroner D. Fluid flow with dynamic contact angle: Numerical simulation // ZAAM. - 2002. - V. 82, № 3. DOI: 10.1002/1521-4001(200203)82: 3<167::AID-ZAMM167>3.0.C0;2-9.

Тарунин Е.Л. Вычислительный эксперимент в задачах свободной конвекции. - Иркутск, 1990.

Chippada S., Jue T.C., Ramaswamy B. Finite element simulation of combined buoyancy and thermocapillary driven convection in open cavities // Int. J. Numer. Methods Eng. - 1995. - V. 38. DOI: 10.1002/nme.1620380211

Cuvelier C., Driessen J.M. Thermocapillary free boundaries in crystal growth // J. Fluid Mech. - 1986. - V. 169. DOI: 10.1017/S0022112086000526.

How to Cite
Протопопова Т. A Numerical Method for Calculation of Stationary Convective Liquid Flow with a Free Boundary // Izvestiya of Altai State University, 1, № 1/2(85) DOI: 10.14258/izvasu(2015)1.2-27. URL: http://izvestiya.asu.ru/article/view/%282015%291.2-27.