Развитие теории и эксперимента в области сенсорно-актуаторных квантовых технологий биомиметических материалов

УДК 538.9:539.21

  • Марк Сергеевич Жуковский Алтайский государственный технический университет им. И.И. Ползунова, Барнаул, Россия Email: mark@zhukosvky.org
Ключевые слова: квантовые сенсорно-актуаторные технологии, квантовые наноэлектромеханические системы, биомиметические материалы, квантовая физикохимия, теория, эксперимент, компьютерное моделирование

Аннотация

В обзоре дан анализ проблемы создания единого подхода к экспериментальному описанию и к теоретическому расчету взаимосвязей, идущих параллельно внутри атомов аттосекундных реакций субатомных квазичастиц и фемтосекундных превращений на атомном масштабном уровне биомиметических материалов. Решение этой проблемы появилось на грани 2020-х гг., когда синхротронная генерация аттосекундных однопериодных фотонов сделала возможным экспериментальное изучение их влияния на субатомную квантовую динамику в материалах и открыла путь к квантовым технологиям управления аттосекундной динамикой пар и одиночных электронов, запутанных с однопериодными фотонами. Рассмотрены решения трех основных задач, открывающих реальные перспективы разработки квантовых наноэлектромеханических систем сенсорно-актуаторных технологий самосборки и самоорганизации биомиметических материалов, начиная с аттосекундно-субатомного масштаба и, через диссипативные энергетические цепи, заканчивая фемтосекундными процессами на атомном уровне материала. Рассмотрены значимость и актуальность построения моделей квантовой физикохимии и компьютерных расчетов механизмов иерархической системы управления квантовыми технологиями не только на субатомном и атомном, но также на более высоких нано-, микро- и мезомасштабных уровнях строения биомиметических материалов.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Биография автора

Марк Сергеевич Жуковский, Алтайский государственный технический университет им. И.И. Ползунова, Барнаул, Россия

кандидат химических наук, доцент кафедры информационных систем в экономике

Литература

Intelligent Materials / Edited by M. Shahinpoor, H.-J. Schneider. Cambridge, UK: Thomas Graham House. 2008. 532 p.

Жуковский М.С., Безносюк С.А., Потекаев А.И., Старостенков М.Д. Теоретические основы компьютерного наноинжиниринга биомиметических наносистем. Томск: Изд-во Научно-техническая литература, 2011. 236 с.

Martin D.R., Matyushov D.V. Electron-transfer Chain in Respiratory Complex I // Scientific Reports. 2017. Vol. 7. P. 1-11. DOI: 10.1038/s41598-017-05779-y

Эббот Д., Дэвис П., Пати А. Квантовые аспекты функционирования биологических структур. Долгопрудный: Изд-во Интеллект. 2014. 320 с.

Corkum PB. Attosecond Pulses at Last // Nature. 2000. Vol. 403. P. 845-846. DOI: 10.1038/35002711

Levesque J., Corkum P.B. Attosecond Science and Technology // Canadian Journal of Physics. 2006. Vol. 84. No 1. P. 1-18. DOI: 10.1139/p05-068

Niikura H., Corkum P.B. Attosecond and Angstrom Science // Advances in Atomic, Molecular and Optical Physics. 2006. Vol. 54. P. 511-548. DOI: 10.1016/S1049-250X(06)54008-X

Corkum P.B., Krausz F. Attosecond Science // Nature Physics. 2007. Vol. 6. No 3. P. 381-387. DOI: 10.1038/nphys620

Krausz F., Ivanov M., Attosecond Physics // Reviews of Modern Physics. 2009. Vol. 81. No 1. P. 163-234. DOI: 10.1103/ RevMo dPhys.81.163

Gallmann L., Cirelli C., Keller U. Attosecond Science: Recent Highlights and Future Trends // Annual Review of Physical Chemistry. 2012. Vol. 63. P. 447-469. DOI: 10.1146/ annurev-physchem-032511-143702

Ranitovic P., Hogle C. W., Riviere P., Palacios A., Tong X.M., Toshima N., et al Attosecond Vacuum UV Coherent Control of Molecular Dynamics // Proceedings of the National Academy of Sciences USA. 2014. Vol. 111. P. 912-917. DOI: 10.1073/pnas.1321999111

Kim D.E. Extreme Metrology for Ultrafast Electron Dynamics at the Atomic Scale II Journal of the Korean Physical Society. 2018. Vol. 73. P. 227-234. DOI: 10.3938/jkps.73.227

Hofmann C., Bray A., Koch W. et al. Quantum Battles in Attoscience: Tunnelling // The European Physical Journal D. 2021. Vol. 75. P. 1-13. DOI: 10.1140/epjd/s10053-021-00224-2

Armstrong G.S.J., Khokhlova M.A., Labeye M., et al. Dialogue on Analytical and Ab Initio Methods in Attoscience // The European Physical Journal D. 2021. Vol. D 75. No 209. P. 1-31. DOI: 10.1140/epjd/s10053-021-00207-3

Жуковский М.С., Безносюк С.А., Ладыгин Ю.И. Компьютерный наноинжиниринг функциональных био-миметических материалов и устройств // Нанотехника. 2011. № 1 (25). С. 80-85.

Жуковский М. С., Безносюк С.А., Ванчинкхуу Дж. Теоретические основы и компьютерное моделирование фемтосекундного импульсного синтеза активных центров наноструктурных превращений материалов // Фундаментальные проблемы современного материаловедения. 2013. Т. 10. С. 176-184.

Жуковский М.С, Безносюк С.А. Квантовая теория моделирования фемтосекундно-импульсной самосборки и самоорганизации активных нанометровых частиц в материалах // Нанотехника. 2013. № 1 (33). С. 41-45.

Beznosyuk S.A., Zhukovsky M.S., Zhukovsky T.M. Theory and Computer Simulation of Quantum Nems Energy Storage in Materials // International Journal of Nanoscience. 2015. Vol. 14. P.147-152. DOI: 10.1142/ S0219581X14600230

Beznosyuk S.A., Zhukovsky M.S. Multiscale SpaceTime Dissipative Structures in Materials: Two-Electron Genesis of Nonequilibrium Electromechanical Interfaces // Physical Mesomechanics. 2017. Vol. 20. P. 102-110. DOI: 10.1134/ S102995991701009X

Steinhauser M.O. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications : 2nd Edition. Berlin, Heidelberg: Springer-Verlag. 2017. 419 p. DOI: 10.1007/978-3-662-53224-9

Умэдзава Х., Мацумото Х., Татики М. Термополевая динамика и конденсированные состояния: пер с англ. М.: Физматлит, 1985. 509 с.

Hess Н. Toward Devices Powered by Biomolecular Motors // Science. 2006. Vol. 312. P. 860-861. DOI: 10.1126/ science.1126399

Lund K., Manzo A.J., Dabby N., et al. Molecular Robots Guided by Prescriptive Landscapes // Nature. 2010. Vol. 465 (7295). P. 206-210. DOI: 10.1038/nature09012

Lerner E.J. Biomimetic Nanotechnology // The Industrial Physicist. 2010. No 4. P. 16-19.

Horejs C., Mitra M.K., Pum D., Sleytr U.B., Muthukumar M. Monte Carlo Study of the Molecular Mechanisms of Surface-Layer Protein Self-Assembly // The Journal of Chemical Physics. 2011. Vol. 134 (12). P. 125103. DOI: 10.1063/1.3565457

Horejs C., Gollner H., Pum D., Sleytr U.B., Peterlik H., Jungbauer A., Tscheliessnig R. Atomistic Structure of Mono-molecular Surface Layer Self-Assemblies: Toward Functionali-zed Nanostructures // ACS Nano. 2011. Vol. 5 (3). P. 2288-2297. DOI: 10.1021/nn1035729

Injac R., Prijatelj M., Strukelj B. Fullerenol Nanoparticles: Toxicity and Antioxidant Activity // Oxidative Stress and Nanotechnology: Methods and Protocols. 2013. Vol. 1028. P. 75-100. DOI: 10.1007/978-1-62703-475-3_5

Kovel E., Sachkova A., Vnukova N., Churilov G., Knyazeva E., Kudryasheva N. Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents // International Journal of Molecular Sciences. 2019. Vol. 20 (9), No 2324. P. 1-16. DOI: 10.3390/ijms20092324

Kovel E.S., Kicheeva A.G., Vnukova N.G., Churilov G.N., Stepin E.A., Kudryasheva N.S. Toxicity and Antioxidant Activity of Fullerenol C60, 70 with Low Number of Oxygen Substituents // International Journal of Molecular Sciences. 2021. Vol. 22 (12). No 6382. P. 1-17. DOI: 10.3390/ijms22126382

Tang N., Ding Z., Zhang J., Cai Y. and Bao X. Recent Advances of Antioxidant Low-Dimensional Carbon Materials for Biomedical Applications // Frontiers in Bioengineering and Biotechnology. 2023. Vol. 11. P. 1-6. DOI: 10.3389/ fbioe.2023.1121477

El-Hnayn R., Canabady-Rochelle L., Desmarets C., Balan L., Rinnert H., Joubert O., et al. One-Step Synthesis of Diamine-Functionalized Graphene Quantum Dots from Graphene Oxide and Their Chelating and Antioxidant Activities // Nanomaterials. 2020. Vol. 10. P. 1-18. DOI: 10.3390/nano10010104

Vatandost E., Saraei A.G., Chekin F., Raeisi S.N., Sha-hidi S. Antioxidant, Antibacterial and Anticancer Performance of Reduced Graphene Oxide Prepared via Green Tea Extract Assisted Biosynthesis // Chemistry Select. 2020. Vol. 5. P. 10401-10406. DOI: 10.1002/slct.202001920

Tara N., Siddiqui S.I., Nirala R.K., Abdulla N.K., Chaudhry S.A. Synthesis of Antibacterial, Antioxidant And Magnetic Nigella Sativa-Graphene Oxide Based Nanocomposite BC-GO@Fe3O4 for Water Treatment // Colloid and Interface Science Communications. 2020. Vol. 37. P. 1-12. DOI: 10.1016/j.colcom.2020.100281

Yao W., Zhou S., Wang Z., Lu Z., Hou C. Antioxidant Behaviors of Graphene in Marine Environment: a First-Principles Simulation // Applied Surface Science. 2020. Vol. 499. P. 1-7. DOI: 10.1016/j.apsusc.2019.143962

Chang X., Xu S., Liu S., Wang N., Sun S., Zhu X., et al. Highly Sensitive Acetone Sensor Based on WO3 Nanosheets Derived from WS2 Nanoparticles with Inorganic Fullerene-Like Structures // Sensors and Actuators B: Chemical. 2021. Vol. 343. P. 1-11. DOI: 10.1016/j.snb.2021.130135

Gakhar T., Rosenwaks Y., Hazra A. Fullerene (C60) Functionalized TiO2 Nanotubes for Conductometric Sensing of Formaldehyde //Sensors and Actuators B: Chemical. 2022. Vol. 364. P. 1-12. DOI: 10.1016/j.snb.2022.131892

Shetti N.P., Mishra A., Basu S., Aminabhavi T. M. Versatile Fullerenes as Sensor Materials // Materials Today Chemistry, 2021. Vol. 20. No 100454. P. 1-27. DOI: 10.1016/j. mtchem.2021.100454

Uygun H.D.E., Uygun Z.O. Fullerene Based Sensor and Biosensor Technologies // Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. Intech. Open. 2020. Vol. 1. P. 1-16.

Amin N.A.A.M., Said S.M., Salleh M.F.M., Afifi A.M., Ibrahim N.M.J.N., Hasnan M.M.I.M., Tahir M., Hashim N.Z.I., Review of Fe-Based Spin Crossover Metal Complexes in Multiscale Device Architectures // Inorganica Chimica Acta. 2023. Vol. 544. P. 12168-1-121168-12. DOI: 10.1016/j. ica.2022.121168

Blencowe M. Quantum Electromechanical Systems // Physics Reports. 2004. Vol. 395. P. 159-222. DOI: 10.1016/j. physrep.2003.12.005

Desai T., Bhatia S. Therapeutic Micro/Nanotechnology. BioMEMS and Biomedical Nanotechnology. Berlin: Springer. 2007. 1856 p.

Безносюк С.А., Жуковский М.С., Потекаев А.И. Теория движения в конденсированном состоянии квантовых электромеханических плазмоидных наноботов // Известия вузов. Физика. 2013. Т. 56. № 5. С. 55-64. DOI: 10.1007/ s11182-013-0067-8

Beznosyuk S.A., Maslova O.A., Zhukovsky M.S. Quantum Infrastructure of Attosecond Sensors and Actuators of Nonequilibrium Physical Media in Smart Materials // Physical Mesomechanics. 2019. Vol. 22. P. 432-438. DOI: 10.1134/ S1029959919050096

Beznosyuk S.A., Maslova O.A., Zhukovsky M.S. Hybrid Quantum Technologies of Intellectual Nanomaterials // International Journal of Nanotechnology. 2019. Vol. 16. P. 22-33. DOI: 10.1504/IJNT.2019.102389

Mak A., Shamuilov G., Salen C., et al. Attosecond Single-Cycle Undulator Light: A Review // Reports on Progress in Physics. 2019. Vol. 82. P. 1-30. DOI: 10.1088/1361-6633/aafa35

Maroju P.K., Grazioli C., Fraia M. Di., et al. Attosecond Pulse Shaping Using a Seeded Free-Electron Laser // Nature. 2020. Feb. Vol. 578 (7795). P. 386-391. DOI: 10.1038/s41586-020-2005-6

Aseev S.A., Mironov B.N., Ryabov E.A., et al. Ultrafast Transmission Electron Microscope for Studying The Dynamics of the Processes Induced by Femtosecond Laser Beams // Quantum Electronics. 2017. Vol. 47. P. 116-122. DOI: 10.1070/ QEL16276

Beznosyuk S.A., Maslova O.A., Zhukovsky M.S. Attosecond Nanotechnology: From Subatomic Electrostatic Strings Entangling Electron Pairs to Supra-Atomic Quantum Nanoelectromechanical Systems Energy Storage in Materials // International Journal of Nanotechnology. 2018. Vol. 15. P. 245-257. DOI: 10.1504/IJNT.2018.094783

Ofer K. Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime // Physical Review Letters. 2019. Vol. 123. P. 103602-1-103602-7. DOI: 10.1103/ PhysRevLett.123.103602

Agueny H. Coherent Electron Displacement for Quantum Information Processing Using Attosecond Single Cycle Pulses // Scientific Reports. 2020. Vol. 10. 21869. P. 1-9. DOI: 10.1038/s41598-020-79004-8

Vanacore G.M., Madan I., Carbone F. Spatio-Temporal Shaping of a Free-Electron Wave Function Via Coherent Light-Electron Interaction // La Rivista del Nuovo Cimento. 2020. Vol. 43. P. 567-597. DOI: 10.1007/s40766-020-00012-5

Siwick B.J., Arslan I., Wang X. Frontier Nonequilibrium Materials Science Enabled by Ultrafast Electron Methods // MRS Bulletin. 2021. Vol. 46. P. 688-693. DOI: 10.1557/s43577-021-00148-7

Ebbesen T.W. Hybrid Light-Matter States in a Molecular and Material Science Perspective // Accounts of Chemical Research. 2016. Vol. 49 (11). P. 2403-2412. DOI: 10.1021/acs. accounts.6b00295

Thomas A., et al. Tilting a Ground-State Reactivity Landscape by Vibrational Strong Coupling // Science. 2019. Vol. 363. P. 615-619. DOI: 10.1126/science.aau7742

Sidler D., Ruggenthaler M., Schafer C., Ronca E., Rubio A. A Perspective on Ab Initio Modeling of Polaritonic Chemistry: The Role of Non-Equilibrium Effects and Quantum Collectivity // The Journal of Chemical Physics. 2022. Vol. 156. P. 1-23. DOI: 10.1063/5.0094956

Gonzalez-Ballestero C., Feist J., Gonzalo Badia E., et al. Uncoupled Dark States Can Inherit Polaritonic Properties // Physical Review Letters. 2016. Vol. 117. P. 156402-1-156402-5. DOI: 10.1103/PhysRevLett.117.156402

Опубликован
2024-04-05
Как цитировать
Жуковский М. С. Развитие теории и эксперимента в области сенсорно-актуаторных квантовых технологий биомиметических материалов // Известия Алтайского государственного университета, 2024, № 1(135). С. 19-29 DOI: 10.14258/izvasu(2024)1-02. URL: http://izvestiya.asu.ru/article/view/%282024%291-02.