О геометрии почти квази-пара-сасакиевых многообразий, оснащенных канонической N-связностью
УДК 514.763
Аннотация
Вводится понятие почти квази-пара-сасакиева многообразия. В отличие от известной ранее квази-пара-сасакиевой структуры почти квази-пара-сасакиева структура не является нормальной структурой. Свойство нормальности в исследуемом в статье случае заменяется на более слабое свойство почти нормальности. Почти нормальные структуры аналогичны по своим свойствам интегрируемым тензорным структурам. Приводятся необходимые примеры. В частности, приводится пример почти квази-пара-сасакиевой структуры, естественным образом определяемой на распределении нулевой кривизны субриманова многообразия контактного типа. На почти квази-пара-сасакиевом многообразии определяется связность с кручением специального строения, названная в работе продолженной связностью. Продолженная связность определяется с помощью внутренней связности и эндоморфизма, сохраняющего распределение почти (пара)контактного многообразия. Доказывается, что продолженная связность с кососимметрическим кручением определена однозначно и является метрической связностью. Находятся условия, при которых почти квази-пара-сасакиево многообразие является η-Эйнштейновым многообразием относительно продолженной связности с кососимметрическим кручением.
Скачивания
Metrics
Литература
Галаев С.В. Почти контактные метрические пространства с N-связностью // Известия Саратовского ун-та. Новая серия: Математика. Механика. Информатика. 2015. Т. 15. №3. DOI: 10.18500/1816-9791-2015-15-3-258-264.
Галаев С.В. Геометрическая интерпретация тензора кривизны Вагнера для случая многообразия с контактной метрической структурой // Сибирский математический журнал. 2016. Т. 57. № 3. DOI: 10.17377/smzh.2016.57.310.
Галаев С.В. Гладкие распределения с допустимой ги-перкомплексной псевдоэрмитовой структурой // Вестник Башкирского ун-та. 2016. Т. 21. № 3.
Agricola I., Ferreira A.C. Einstein manifolds with skew torsion // Q. J. Math. 2014. Vol. 65. № 3. DOI: 10.1093/qmath/ hat050.
Friedrich T., Ivanov S. Parallel spinors and connections with skew-symmetric torsion in string theory // AsianJ. Math. 2002. Vol. 6. https://doi.org/10.48550/arXiv.math/0102142.
Zamkovoy S. Canonical connections on paracontact manifolds // Ann. Glob. Anal. Geom. 2009. Vol. 36. https://doi. org/10.48550/arXiv.0707.1787.
Blair D.E. Riemannian Geometry of Contact and Symp-lectic Manifolds // Progress in Mathematics. Birkhauser. Boston. 2002. Vol. 203.
Kanemaki S. Quasi-Sasakian manifolds // Tohoku Math. J. 1977. Vol. 29.
Букушева А.В. Многообразия Кенмоцу с распределением нулевой кривизны // Вестник Том. гос. ун-та. Математика и механика. 2020. № 64. DOI: 10.17223/19988621/64/1.
Kupeli Erken I. Curvature Properties of Quasi-Para-Sasakian Manifolds // International electronic journal of geometry. 2019. Vol. 12. № 2. https://doi.org/10.48550/ arXiv. 1807.04138.
Blair D.E. The theory of quasi-Sasakian structures // J. Differential Geom. 1967. Vol. 1.
Olszak Z. Curvature properties of quasi-Sasakian manifolds // Tensor. 1982. Vol. 38. https://doi.org/10.48550/ arXiv. 1209.5886.
Tanno S. Quasi-Sasakian structures of rank 2p + 1 // J. Differential Geom. 1971. Vol. 5.
Welyczko J., On Legendre Curves in 3-Dimensional Normal Almost Paracontact Metric // Manifolds. Result. Math. 2009. Vol. 54. https://doi.org/10.1007/s00025-009-0364-2.
Букушева А.В. Нелинейные связности и внутренние полупульверизации на распределении с обобщенной лагранжевой метрикой // Дифференциальная геометрия многообразий фигур. 2015. № 46.
Galaev S.V Intrinsic geometry of almost contact kahlerian manifolds // Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis. 2015. Vol. 31.
Copyright (c) 2023 Сергей Васильевич Галаев , Евгений Анатольевич Кокин
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.