Structure and Properties of the "Cantor HEA Coating (Mn-Fe-Cr-Co-Ni) / Substrate (Alloy 5083)" System

УДК 536.425:669.017.1

  • S.V. Konovalov Siberian State Industrial University (Novokuznetsk, Russia) Email: konovalov@sibsiu.ru
  • M.O. Efimov Siberian State Industrial University (Novokuznetsk, Russia) Email: moefimov@mail.ru
  • I.A. Panchenko Siberian State Industrial University (Novokuznetsk, Russia) Email: i.r.i.ss@yandex.ru
  • Yu.A. Shliarova Siberian State Industrial University (Novokuznetsk, Russia) Email: rubannikova96@mail.ru
Keywords: high-entropy alloy, coating / substrate system, aluminum alloy, elemental and phase composition, microhardness, hardening

Abstract

Using the technology of cold metal transfer (wire-arc additive manufacturing combined with welding surfacing), a coating is formed on a 5083 alloy substrate with a high-entropy Mn-Fe-Cr-Co-Ni alloy of nonequiatomic composition. Analysis of the structure, elemental composition, and microhardness of the coating-substrate system is carried out using the methods of modern physical materials science. A significant increase (up to 9.9 GPa) in the microhardness of the material is found in the zone of contact between the coating and the substrate. The formation of lamellar inclusions (Al13F4) enriched in coating atoms in the zone of contact between the coating and the substrate is revealed. The high entropy coating in the contact zone has a submicrocrystalline grain-subgrain structure with a crystallite size ranging from 0.5 μm to 1.1 μm along the boundaries where nanosized particles of the second phase (Al3Ni) are revealed. The volume of grains contains a dislocation substructure in the form of randomly distributed dislocations or dislocation clusters. The scalar density of the dislocations is (0.8-1.0)· 1010 cm-2. An assumption is made about the physical mechanisms of hardening of the material in the "coating-substrate" contact zone. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

S.V. Konovalov, Siberian State Industrial University (Novokuznetsk, Russia)

доктор технических наук, профессор, проректор по научной и инновационной деятельности

M.O. Efimov, Siberian State Industrial University (Novokuznetsk, Russia)

аспирант кафедры естественно-научных дисциплин им. проф. В.М. Финкеля

I.A. Panchenko, Siberian State Industrial University (Novokuznetsk, Russia)

заведующая Лабораторией электронной микроскопии и обработки изображений

Yu.A. Shliarova, Siberian State Industrial University (Novokuznetsk, Russia)

аспирант кафедры естественно-научных дисциплин им. проф. В.М. Финкеля, научный сотрудник Лаборатории электронной микроскопии и обработки изображений

References

Gromov VE., Konovalov S.V, Ivanov Yu.F., Osintsev K.A. Structure and properties of high-entropy alloys. Springer. Advanced structured materials, 2021.

Ivanov Yu.F., Osintsev K.A., Gromov V.E., Konovalov S.V, Panchenko I.A. Deformation Behavior of a High-Entropy Al-Co-Cr-Fe-Ni Alloy Fabricated by Means of Wire-Arc Additive Manufacturing // Steel in Translation. 2021. Vol. 51. № 1. https://doi.org/10.3103/S0967091221010046.

Осинцев К.А., Громов В.Е., Коновалов С.В., Иванов Ю.Ф., Панченко И.А. Высокоэнтропийные сплавы: структура, механические свойства, механизмы деформации и применение // Известия вузов. Черная металлургия. 2021. Т. 64. № 4. https://doi.org/10.17073/0368-0797-2021-4-249-258.

Zhang Y. High-Entropy Materials. A Brief George E.P., Curtin W.A., Tasan C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms // Acta Materialia. 2020. Vol. 188. https://doi.org/10.1016/j. actamat.2019.12.015.

Alshataif Y.A., Sivasankaran S., Al-Mufadi F.A., Alabo-odi A.S., Ammar H.R. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloy: a review // Metals and Materials International. 2019. Vol. 26. https://doi.org/10.1007/s12540-019-00565-z.

Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Materialia. 2017. Vol. 122. https://doi.org/10.1016/j.actamat.2016.08.081.

Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys // Science China Materials. 2018. Vol. 61. № 1. https://doi.org/10.1007/s40843-017-9195-8.

Huang Y.S., Chen L., Lui H.W., Cai M.H., Yeh J.W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu 0.5 NiFe high-entropy alloy // Mater. Sci. Eng. A. 2007. Vol. 457. https://doi. org/10.1016/j.msea.2006.12.001.

Tung C.C., Yeh J.W., Shun T.T., Chen S.K., Huang Y.S., Chen H.C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system // Mater. Lett. 2007. Vol. 61. https://doi. org/10.1016/j.matlet.2006.03.140.

Zhou Y.J., Zhang Y., Kim T.N., Chen G.L. Microstructure characterizations and strengthening mechanism of multiprincipal component AlCoCrFeNiTi05 solid solution alloy with excellent mechanical properties // Mater. Lett. 2008. Vol. 62. https://doi.org/10.1016/j.matlet.2008.01.011.

Chang H.W., Huang P.K., Yeh J.W., Davison A., Tsau C.H., Yang C.C. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi) N coatings // Surf. Coat. Technol. 2008. Vol. 202. https://doi. org/10.1016/j.surfcoat.2007.12.014.

Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K. Refractory high-entropy alloys // Intermetallics. 2010. Vol. 18. https://doi.org/10.1016/j.intermet.2010.05.014.

Li C., Li J.C., Zhao M., Jiang Q. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys // J. Alloys Compd. 2009. Vol. 475. https://doi.org/10.1016/j.jallcom.2008.07.124.

Chuang M.H., Tsai M.H., Wang W.R., Lin S.J., Yeh J.W. Microstructure and wear behavior of Al Co, =CrFeNi, =Ti high-x 1.5 1.5 y entropy alloys // Acta Mater. 2011. Vol. 59. https://doi. org/10.1016/j.actamat.2011.06.041.

Qiu X.W. Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy // J. Alloys Compd. 2013. Vol. 555. https://doi. org/10.1016/j.jallcom.2012.12.071.

Tariq N.H., Naeem M., Hasan B.A., Akhter J.I., Siddique M. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy // J. Alloys Compd. 2013. Vol. 556. https://doi.org/10.1016/j. jallcom.2012.12.095.

Singh S., Wanderka N., Murty B.S., Glatzel U., Ban-hart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy // Acta Mater. 2011. Vol. 59. https://doi. org/10.1016/j.actamat.2010.09.023.

Lai C.H., Tsai M.H., Lin S.J., Yeh J.W. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings // Surf. Coat. Technol. 2007. Vol. 201. https://doi.org/10.1016/j.surfcoat.2007.01.001.

Huang P.K., Yeh J.W. Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNb-SiTiV)N coatings // Thin Solid Films. 2009. Vol. 518. https://doi.org/10.1016/j.tsf.2009.06.020.

Tsai M.H., Lai C.H., Yeh J.W., Gan J.Y. Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings // J. Phys. D: Appl. Phys. 2008. Vol. 41. DOI: 10.1088/0022-3727/41/23/235402.

Cheng K.H., Lai C.H., Lin S.J., Yeh J.W. Structural and mechanical properties of multi-element (AlCrMoTaTiZr) Nx coatings by reactive magnetron sputtering // Thin Solid Films. 2011. Vol. 519. https://doi.org/10.1016/j.tsf.2010.11.034.

Lai C.H., Lin S.J., Yeh J.W., Chang S.Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings // Surf. Coat. Technol. 2006. Vol. 201. https://doi.org/10.1016/j. surfcoat.2006.06.048.

Chang S.Y., Chen M.K., Chen D.S. Multiprincipal-element AlCrTaTiZrnitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization // J. Electrochem. Soc. 2009. Vol. 156. D0I:10.1149/1.3097186.

Zhang T., Xin L., Wu F., Xiang Chen J., Jiang S., Huang Y., Chen S. Microstructure and mechanical of FexCoCrNiMn high-entropy alloys // Journal of Materials Science and Technology. 2019. Vol. 35. № 10. https://doi.org/10.1016/j. jmst.2019.05.050.

Gludovatz B.A., Hohenwarter A., Catoor D., Chang E.H., George E.P, Ritchie R.O. Fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. Vol. 345. № 6201. DOI: 10.1126/science.1254581.

Egerton F.R. Physical Principles of Electron Microscopy. Basel, 2016.

Kumar C.S.S.R. Transmission Electron Microscopy. Characterization of Nanomaterials. New York, 2014.

Carter C.B., Williams D.B. Transmission Electron Microscopy. Berlin, 2016.

Published
2023-03-28
How to Cite
Konovalov S., Efimov M., Panchenko I., Shliarova Y. Structure and Properties of the "Cantor HEA Coating (Mn-Fe-Cr-Co-Ni) / Substrate (Alloy 5083)" System // Izvestiya of Altai State University, 2023, № 1(129). P. 37-43 DOI: 10.14258/izvasu(2023)1-05. URL: http://izvestiya.asu.ru/article/view/%282023%291-05.