Modeling of Thin Liquid Layer Flow on an Inclined Substrate Based on the Navier — Stokes Equations in the Case of Large Reynolds Numbers

УДК 519.6+532.5

  • Ekaterina V. Laskovets Altai State University, Barnaul, Russia Email: katerezanova@mail.ru
Keywords: thin layer, generalized conditions, parametric analysis, evolution equation, numerical algorithm

Abstract

The paper deals with the mathematical model constructed to study the flow of a thin liquid layer on an inclined, unevenly heated solid substrate. The system of Navier — Stokes and heat transfer equations representing the generalized kinematic, dynamic, and energy conditions at the boundary, including mass transfer, are selected as the governing equations. The paper considers a two-dimensional formulation of the problem at large Reynolds numbers. The long-wave approximation allows one to obtain analytical solutions for the main terms of the expansion in powers of the small parameter of the problem. The conducted parametric analysis helps identify the factors that influence the nature of the flow the most. Then, the evolution equation to determine the position of the liquid-gas interface is obtained. The presented developed algorithm is capable to solve numerically the problem of periodic liquid flow down an inclined solid substrate. The solution is obtained using the sweeping and parameter sweeping methods. The influence of solid substrate inclination angle on the liquid layer flow is investigated.

Downloads

Download data is not yet available.

Author Biography

Ekaterina V. Laskovets, Altai State University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Computer Science

References

Kabov O.A., Zaitsev D.V., Cheverda V.V. Evaporation and Flow Dynamics of Thin, Sheardriven Liquid Films // Experimental Thermal and Fluid Science. 2011. Vol. 35. No 5. P. 825–831. DOI: 10.1016/j.expthermflusci.2010.08.001

Реутов В.П., Езерский А.Б., Рыбушкина Г.В., Чернов В.В. Конвективные структуры в тонком слое испаряющейся жидкости, обдуваемом воздушным потоком // Прикладная механика и техническая физика. 2007. Т. 48. № 4. С. 3–14.

Oron A., Davis S.H., Bankoff S.G. Longscale Evolution of Thin Liquid Films // Reviews of Modern Physics. 1997. Vol. 69. No 3. P. 931–980. DOI: 10.1103/RevModPhys.69.931

Miladinova S., Slavtchev S., Lebon G., Legros J.-C. Longwave Instabilities of Nonuniformly Heated Falling Films // Journal of Fluid Mechanics. 2002. Vol. 453. P. 153–175. DOI:10.1017/S0022112001006814

Кабов О.А., Кабова Ю.О., Кузнецов В.В. Испарение неизотермической пленки жидкости в микроканале при спутном потоке газа // Доклады академии наук. 2007. Т. 446. № 5. С. 522–526.

Kuznetsov V.V., Fominykh E.Yu. Evaporation of a Liquid Film in a Microchannel Under the Action of a Co-current Dry Gas FSlow // Microgravity Science and Technology. 2020. Vol. 32. P. 245–258. DOI: 10.1007/s12217-019-09765-z

Das K.S., Ward C.A. Surface Thermal Capacity and its Effects on the Boundary Conditions at Fluid-fluid Interface // Physical Review E. 2007. Vol. 75. P. 065303-1–065303-4. DOI:10.1103/PhysRevE.75.065303

Кузнецов В.В. Тепломассообмен на поверхности раздела жидкость — пар // Известия РАН. Механика жидкости и газа. 2011. № 5. С. 97-107.

Гончарова О.Н., Резанова Е.В. Математическая модель течений тонкого слоя жидкости с учетом испарения на термокапиллярной границе раздела // Известия Алтайского государственного университета. 2014. № 81 (1/2). C. 21-25. DOI: 10.14258/izvasu(2014)1.2-02

Laskovets E.V. Numerical Modeling of an Inclined Thin Liquid Layer Flow Based on Generalized Boundary Conditions // Journal of Mathematical Sciences. 2022. Vol. 267. No 4. P. 501-510. DOI: https://doi.org/10.1007/s10958- 022-06155-6

Гончарова О.Н. Моделирование течений в условиях тепло- и массопереноса на границе // Известия Алтайского государственного университета. 2012. № 73 (1/2). С. 12-18.

Бекежанова В.Б., Гончарова О.Н. Задачи испарительной конвекции (обзор) // Прикладная математика и механика. 2018. Т. 82. № 2. С. 219-260.

Laskovets E.V Numerical Simulation of Convective Flows in a Thin Liquid Layer at Large Reynolds Numbers // Computational Mathematics and Mathematical Physics. 2024. Vol. 64. No 6. P. 1342-1352. DOI: https://doi.org/10.1134/ S096554252470056

Самарский А.А. Методы решения сеточных уравнений. M.: Наука, 1978. 91 с.

Published
2025-04-02
How to Cite
Laskovets E. V. Modeling of Thin Liquid Layer Flow on an Inclined Substrate Based on the Navier — Stokes Equations in the Case of Large Reynolds Numbers // Izvestiya of Altai State University, 2025, № 1(141). P. 35-40 DOI: 10.14258/izvasu(2025)1-04. URL: https://izvestiya.asu.ru/article/view/%282025%291-04.