Two-Dimensional Problem of Gas Filtration in Poroelastic Medium
УДК 532.5 + 517.95 + 519.63
Abstract
This article discusses a two-dimensional mathematical model of carbon dioxide (carbon dioxide, cO2) burial in the Earth’s interior. The defining system of equations consists of liquid or gas filtration equations which are a generalization of the Masket — Leverett filtration models. The assumption of the small movement speed of the solid phase, as well as the incompressibility of the gas and solid phases, makes it possible to reduce the original system of governing equations to the problem of finding the effective pressure and porosity of the medium. The filtration area is a rock layer into which gas is supplied from below through a well at a given constant speed. The upper boundary is the roof of the formation, and the lateral and lower boundaries of the formation are limited by impermeable rocks. Special cases of gas injection are considered when a nonflow condition is imposed on the roof of the formation for two phases and when the surface is permeable to gas. The release of carbon dioxide to the surface is understood to be due to an increase in porosity at the top of the formation. Numerical modeling of the resulting initial boundary value problem and analysis of the results are carried out.
Downloads
Metrics
References
Flemisch B., Nordbotten J.M., Fern M. et al. The Fluid-Flower Validation Benchmark Study for the Storage of CO2 // Transport in Porous Media. 2023. P. 1–48. DOI: 10.1007/s11242-023-01977-7
Myshakin E.M., Haeri F., Moore J. et al. Numerical Simulations of Carbon Dioxide Storage Efficiency in Heterogeneous Reservoir Models // Geofluids. 2023. Vol. 2023. P. 1–16. DOI:10.1155/2023/5089508
Wen G., Li Z., Long Q. et al. Real-time High-resolution CO2 Geological Storage Prediction Using Nested Fourier Neural Operators // Energy & Environmental Science. 2023. Vol. 16. No 4. P. 1732–1741. DOI: 10.1039/D2EE04204E
Вирц Р.А., Папин А.А. Проблемы математического моделирования хранения углекислого газа в геологических формациях : учебное пособие. Барнаул: Издательство Алтайского государственного университета. 2021. 70 с.
Connoly J.A.D., Podladchikov Y.Y. Compaction-driven Fluid Flow in Viscoelastic Rock // Geodinamica Acta. 1998. Vol. 11. No 2–3. P. 55–84. DOI: 10.1016/S0985-3111(98)80006-5
Fowler A. Mathematical Geoscience. London: Springer-Verlag London Limited, 2011. 883 p. DOI: 10.1007/978-0-85729-721-1
Вирц Р.А., Папин А.А. Моделирование захоронения углекислого газа в вязкоупругой пористой среде // Вычислительные технологии. 2022. Т. 27. № 6. С. 4–18. DOI: 10.25743/ICT.2022.27.6.002
Morency S., Huismans R.S., Beaumont C., Fullsack P A Numerical Model for Coupled Fluid Flow and Matrix Deformation with Applications to Disequilibrium Compaction and Delta Stability // Journal of Geophysical Research. 2007. Vol. 112. No B10. P. 1-25. DOI: 10.1029/2006JB004701
Connolly J.A.D., Podladchikov Y.Y. Temperature-dependent Viscoelastic Compaction and Compartmentaliza-tion in Sedimentary Basins // Tectonophysics. 2000. Vol. 324. No 3. P. 137-168. DOI: 10.1016/S0040-1951(00)00084-6
Virts R.A., Papin A.A., Tokareva M.A. Non-isothermal Filtration of a Viscous Compressible Fluid in a Viscoelastic Porous Medium // Journal of Physics: Conference Series. 2020. Vol. 1666. No 1. P. 1-6. DOI: 10.1088/1742-6596/1666/1/012041
Papin A.A., Tokareva M.A., Virts R.A. Filtration of Liquid in a Non-isothermal Viscous Porous Medium // Journal of Siberian Federal University. Mathematics & Physics. 2020. Vol. 13. No 6. P. 763-773. DOI: 10.17516/1997-1397-2020-136-763-773
Tokareva M.A., Papin A.A. Global Solvability of a System of Equations of one-Dimensional Motion of a Viscous Fluid in a Deformable Viscous Porous Medium // Journal of Applied and Industrial Mathematics. 2019. Vol. 13. No 2. P. 350-362. DOI: 10.1134/S1990478919020169
Самарский А.А. Теория разностных схем. М: Наука, 1977. 656 c.
Калиткин Н.Н. Численные методы. М: Наука, 1986. 512 c.
Хакимзянов Г.С., Черный С.Г. Численные методы решения задач для уравнений параболического и эллиптического типов. Новосибирск: Новосиб. гос. ун-т., 2007. 160 c.
Copyright (c) 2024 Рудольф Александрович Вирц
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).