Two-Dimensional Problem of Gas Filtration in Poroelastic Medium

УДК 532.5 + 517.95 + 519.63

  • Rudolf A. Virts Altai State University, Barnaul, Russia Email: virtsrudolf@gmail.com
Keywords: porosity, filtration, poroelasticity, numerical solution, injection

Abstract

This article discusses a two-dimensional mathematical model of carbon dioxide (carbon dioxide, cO2) burial in the Earth’s interior. The defining system of equations consists of liquid or gas filtration equations which are a generalization of the Masket — Leverett filtration models. The assumption of the small movement speed of the solid phase, as well as the incompressibility of the gas and solid phases, makes it possible to reduce the original system of governing equations to the problem of finding the effective pressure and porosity of the medium. The filtration area is a rock layer into which gas is supplied from below through a well at a given constant speed. The upper boundary is the roof of the formation, and the lateral and lower boundaries of the formation are limited by impermeable rocks. Special cases of gas injection are considered when a nonflow condition is imposed on the roof of the formation for two phases and when the surface is permeable to gas. The release of carbon dioxide to the surface is understood to be due to an increase in porosity at the top of the formation. Numerical modeling of the resulting initial boundary value problem and analysis of the results are carried out.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Rudolf A. Virts, Altai State University, Barnaul, Russia

Lecturer of the Department of Differential Equations

References

Flemisch B., Nordbotten J.M., Fern M. et al. The Fluid-Flower Validation Benchmark Study for the Storage of CO2 // Transport in Porous Media. 2023. P. 1–48. DOI: 10.1007/s11242-023-01977-7

Myshakin E.M., Haeri F., Moore J. et al. Numerical Simulations of Carbon Dioxide Storage Efficiency in Heterogeneous Reservoir Models // Geofluids. 2023. Vol. 2023. P. 1–16. DOI:10.1155/2023/5089508

Wen G., Li Z., Long Q. et al. Real-time High-resolution CO2 Geological Storage Prediction Using Nested Fourier Neural Operators // Energy & Environmental Science. 2023. Vol. 16. No 4. P. 1732–1741. DOI: 10.1039/D2EE04204E

Вирц Р.А., Папин А.А. Проблемы математического моделирования хранения углекислого газа в геологических формациях : учебное пособие. Барнаул: Издательство Алтайского государственного университета. 2021. 70 с.

Connoly J.A.D., Podladchikov Y.Y. Compaction-driven Fluid Flow in Viscoelastic Rock // Geodinamica Acta. 1998. Vol. 11. No 2–3. P. 55–84. DOI: 10.1016/S0985-3111(98)80006-5

Fowler A. Mathematical Geoscience. London: Springer-Verlag London Limited, 2011. 883 p. DOI: 10.1007/978-0-85729-721-1

Вирц Р.А., Папин А.А. Моделирование захоронения углекислого газа в вязкоупругой пористой среде // Вычислительные технологии. 2022. Т. 27. № 6. С. 4–18. DOI: 10.25743/ICT.2022.27.6.002

Morency S., Huismans R.S., Beaumont C., Fullsack P A Numerical Model for Coupled Fluid Flow and Matrix Deformation with Applications to Disequilibrium Compaction and Delta Stability // Journal of Geophysical Research. 2007. Vol. 112. No B10. P. 1-25. DOI: 10.1029/2006JB004701

Connolly J.A.D., Podladchikov Y.Y. Temperature-dependent Viscoelastic Compaction and Compartmentaliza-tion in Sedimentary Basins // Tectonophysics. 2000. Vol. 324. No 3. P. 137-168. DOI: 10.1016/S0040-1951(00)00084-6

Virts R.A., Papin A.A., Tokareva M.A. Non-isothermal Filtration of a Viscous Compressible Fluid in a Viscoelastic Porous Medium // Journal of Physics: Conference Series. 2020. Vol. 1666. No 1. P. 1-6. DOI: 10.1088/1742-6596/1666/1/012041

Papin A.A., Tokareva M.A., Virts R.A. Filtration of Liquid in a Non-isothermal Viscous Porous Medium // Journal of Siberian Federal University. Mathematics & Physics. 2020. Vol. 13. No 6. P. 763-773. DOI: 10.17516/1997-1397-2020-136-763-773

Tokareva M.A., Papin A.A. Global Solvability of a System of Equations of one-Dimensional Motion of a Viscous Fluid in a Deformable Viscous Porous Medium // Journal of Applied and Industrial Mathematics. 2019. Vol. 13. No 2. P. 350-362. DOI: 10.1134/S1990478919020169

Самарский А.А. Теория разностных схем. М: Наука, 1977. 656 c.

Калиткин Н.Н. Численные методы. М: Наука, 1986. 512 c.

Хакимзянов Г.С., Черный С.Г. Численные методы решения задач для уравнений параболического и эллиптического типов. Новосибирск: Новосиб. гос. ун-т., 2007. 160 c.

Published
2024-10-07
How to Cite
Virts R. A. Two-Dimensional Problem of Gas Filtration in Poroelastic Medium // Izvestiya of Altai State University, 2024, № 4(138). P. 57-62 DOI: 10.14258/izvasu(2024)4-07. URL: http://izvestiya.asu.ru/article/view/%282024%294-07.