On Some Properties of a Quadrilateral Whose Vertices are Remarkable Points of the Triangle

УДК 514.112.3

  • Yu.N. Maltsev Altai State University (Barnaul, Russia) Email: maltsevyn@gmail.com
  • E.P. Petrov Altai State University (Barnaul, Russia) Email: pep@mail.asu.ru
Keywords: triangle, trapezoid, remarkable point, radius of the circumscribed circle, radius of the inscribed circle

Abstract

This article is devoted to the geometry of a triangle, in particular, to the study of the relative position of well-defined remarkable points of a non-isosceles triangle ABC, where H, I, G, O, N are the orthocenter of the triangle, the center of the inscribed circle, the center of gravity, the center of the circumscribed circle, respectively, and the Nagel point. We prove the following main results: the quadrilateral HNOI is a trapezoid whose diagonals intersect at the point G, HN is parallel to IO, HI is not parallel to NO, and angle HIO > 90°; in the trapezoid HNOI one of the angles is equal to 90° if and only if p2 = 2R2 + 10Rr - r2, wherep, r, R are respectively the semiperimeter, radii of the inscribed and circumscribed circles; necessary and sufficient conditions are found when a circle can be described near the trapezoid HNOI; a circle cannot be inscribed in the trapezoid HNOI; the trapezoid HNOI is not orthodiagonal; the area of the trapezoid HNOI is found, expressed in terms of the parameters p, r, R of the original triangle ABC. The results obtained in the article can be used when reading various courses in Olympiad mathematics, can be useful for high school students and teachers of gymnasiums with in-depth study of mathematics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yu.N. Maltsev, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, почетный профессор

E.P. Petrov, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры медиакоммуникаций, технологий рекламы и связей с общественностью

References

Зетель С.И. Новая геометрия треугольника. М., 1962.

Мальцев Ю.Н., Монастырева А.С., Петров Е.П. Замечательные точки и неравенства в треугольнике. Барнаул, 2021.

Maltsev Yu.N., Monastyreva A.S. On some properties of triangle OIG // The teaching of Mathematics. 2020. Vol. 23. № 2.

Мальцев Ю.Н., Монастырева А.С. О некоторых замечательных точках и отрезках в треугольнике // Известия Алт. гос. ун-та, 2021, № 1(117). DOI: 10.14258/izvasu(2021)1-18.

Andrica D., Barbu C. A geometric proof of Bludon’s inequalities // Math.Inequal.Appl. 2012. Vol. 15. № 2.

Kimberling C. Central points and central lines in the plane of triangle // Math. Mag. 1994. Vol. 67.

Kimberling, C. Triangle centers and Central Triangles // Congr. Numer. 1998. Vol. 129.

Maltsev Yu.N., Monastyreva A.S. On triangles with sides that form an arithmetic progression // Известия Алт. гос. ун-та, 2020, № 1(111). DOI: 10.14258/izvasu(2020)1-18.

Мейдман С., Солтан В. Тождества и неравенства в треугольнике. Кишинев, 1982.

Josefsson M. Characterizations of orthodiagonal quadrilaterals // Forum Geometricorum. 2012. Vol. 12.

Published
2022-09-09
How to Cite
Maltsev Y., Petrov E. On Some Properties of a Quadrilateral Whose Vertices are Remarkable Points of the Triangle // Izvestiya of Altai State University, 2022, № 4(126). P. 123-127 DOI: 10.14258/izvasu(2022)4-19. URL: http://izvestiya.asu.ru/article/view/%282022%294-19.
Section
Математика и механика