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Аннотация. Из 34 классов попарно неизоморф-
ных шестимерных нильпотентных алгебр Ли толь-
ко 26 классов допускают инвариантные симплек-
тические структуры, а оставшиеся восемь классов 
представляют несимплектические группы Ли, т.е. 
такие группы, что каждая замкнутая левоивари-
антная 2-форма является вырожденной. В 1974 г. 
Chu Bon-Yao показал, что каждая замкнутая вы-
рожденная левоинвариантная 2-форма ω на груп-
пе Ли определяет симплектическую структуру 
на однородном пространстве этой группы Ли, ког-
да в качестве группы изотропии выступает под-
группа Ли, соответствующая алгебре вырожде-
ния 2-формы ω. В данной работе рассмотрены 
геометрические структуры на симплектических 
однородных пространствах всех восьми несим-
плектических 6-мерных нильпотентных групп Ли. 
Показано, что инвариантные комплексные или па-
ракомплексные структуры существуют в шести 
случаях из восьми. Показано, что инвариантные 
метрики на рассматриваемых однородных про-
странствах существуют только в четырех из вось-
ми случаев. При этом инвариантные метрики яв-
ляются псевдоримановыми.

Ключевые слова: шестимерные нильпотентные груп-
пы Ли, несимплектические группы Ли, однородные 
пространства, нильмногообразия

Abstract. There are only 26 classes among the 34 classes 
of pairwise non-isomorphic six-dimensional nilpotent 
Lie algebras that admit invariant simpectic structures. 
The remaining eight classes represent non-symplectic Lie 
groups, i.e., groups for which every closed left-invariant 
2-form is a degenerate one. In 1974, Chu Bon-Yao showed 
that every closed degenerate left-invariant 2-form ω 
on a Lie group determines a symplectic structure on a 
homogeneous space of this lie group when the isotropy 
group is Lie subgroup corresponding to the degeneration 
algebra of the 2-form ω. This paper considers geometric 
structures on symplectic homogeneous spaces of all eight 
non-symplectic 6-dimensional nilpotent Lie groups. 
It is shown that invariant complex or paracomplex 
structures exist in six out of eight cases. Invariant metrics 
on the considered homogeneous spaces are proved to exist 
only in four out of eight cases. Moreover, the invariant 
metrics are pseudo-Riemannian ones. 

Keywords: six-dimensional nilpotent Lie groups, non-sym-
plectic Lie groups, homogeneous spaces, nilmanifolds
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h1
dθ

E5 = [0, 0,−t6, t4, t5, 0] E6 = [0, 0, 0, 0, 0, 1]
m1

h1
E1 = [1, 0, 0, 0, 0, 0], E2 = [0, 1, 0, 0, 0, 0],
E3 = [0, 0, 0, 0, t6,−t5], E4 = [0, 0, 0, t6, 0,−t4].

Ei

[E1, E4] =
t6E6 [E1, E5] = −E4 [E2, E3] = t6E6 [E2, E5] =
−E3

dθ

dθ = −t26(E
1 ∧ E4 + E2 ∧ E3).

g1 =
m1 ⊕ h1 m1 ∩ h1 = 0 [h1,m1] ⊂ m1

G1/H1

m1

h1 m1

Ω1

G1/H1 dθ
Ω1 = −t26(E

1 ∧ E4 + E2 ∧ E3)
g m1

h1

g([Z,X], Y ) + g(X, [Z, Y ]) = 0, ∀X,Y ∈ m1, ∀Z ∈ h1

g =




g11 g12 g13 0
g12 g22 0 −g13
g13 0 0 0
0 −g13 0 0




J = (ψij)
Ω1

g1 = m1⊕h1 J
g1 J =


J 0
0 0



J
m1 = To(G1/H1)

J ◦ adZ = adZ ◦ J ∀Z ∈ h1
Ω1(X, JY ) + Ω1(JX, Y ) = 0

NJ(X,Y ) =

[ JX, JY ]+( J)2[X,Y ]− [X, JY ]− J [ JX, Y ] ∈ h1.
adE6

E6

adE5

ψ14 = 0, ψ13 = 0, ψ24 = 0, ψ23 = 0, ψ33 = ψ22,
ψ44 = ψ11, ψ34 = ψ21, ψ43 = ψ12.

Ω1

ψ22 = 0, ψ11 = 0, ψ21 = −ψ12, ψ42 = ψ31.

NJ = 0
J2 = 1 J2 = −1

Ω1

J =




0 1 0 0
−1 0 0 0
ψ31 ψ32 0 −1
−ψ32 ψ31 1 0


 .

(J,Ω1, gJ)
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h6
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E3 [E1, E4] = t6E6 [E1, E5] = −E4 [E2, E3] = E6

dθ dθ = E1 ∧
(−t5E
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J =


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
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E6 = [0, 0, 0, 0, 0, 1]

m7

h7
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