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Аннотация. Исследование групп конформных 
преобразований, потоков Риччи и солитонов Риччи 
на различных классах многообразий является одной 
из актуальных задач современной дифференциальной 
геометрии. Одним из важных классов таких многооб-
разий являются (псевдо)римановы k-симметрические 
пространства. Если в римановом случае k=1, то в псев-
доримановом случае существуют k-симметрические 
пространства для любого k. Такими, например, яв-
ляются обобщенные k-симметрические пространства 
Каэна — Уоллаха, а также 2- и 3-симметрические псев-
доримановы пространства, которые возникают в ис-
следованиях по псевдоримановой геометрии и в фи-
зике и изучались многими математиками. В случае 
малых размерностей эти пространства и конформно 
киллинговы векторные поля на них изучались Д.Н. Ос-
корбиным, Е.Д. Родионовым, а в случае обобщенных 
k-симметрических пространств Каэна — Уоллаха ими 
была установлена связь между солитонами Риччи 
и конформно киллинговыми векторными полями

Abstract. The study of conformal transformation 
groups, Ricci flows, and Ricci solitons on various classes 
of manifolds is one of the actual problems of differential 
geometry. (Pseudo) Riemannian k-symmetric spaces 
are one of the important classes of such manifolds. If 
for the Riemannian case k=1, then there are k-symmetric 
spaces existing for any k values for the pseudo- 
Riemannian case.  The generalized k-symmetric Kahen — 
Wallach spaces, as well as the 2- and 3-symmetric pseudo-
Riemannian spaces, are good examples of that. They appear 
in studies of pseudo-Riemannian geometry and in physics, 
and have been studied by many mathematicians. These 
spaces and conformal Killing vector fields on them were 
studied by D.N. Oskorbin, E.D. Rodionov for the case 
of low dimensions. A connection between Ricci solitons 
and conformal Killing vector fields on the generalized 
k-symmetric Kahen — Wallach spaces was established. 
Also, it was found that the behavior of the conformal 
multiplier depends on the properties of the Weyl tensor. 
In this paper, new nontrivial examples of conformal Killing
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на этих пространствах. Кроме того, оказалось, что по-
ведение конформного множителя зависит от свойств 
тензора Вейля. В данной работе построены новые не-
тривиальные примеры конформно киллинговых век-
торных полей с переменным конформным множите-
лем на пятимерном 2-симметрическом неразложимом 
лоренцевом многообразии с нулевым тензором Вейля.

Ключевые слова: конформные векторные поля Кил-
линга, лоренцевы k-симметрические пространства, 
тензор Вейля

vector fields with a variable conformal factor on a five-
dimensional 2-symmetric indecomposable Lorentzian 
manifold with zero Weyl tensor are constructed.

Keywords: conformal Killing vector fields, Lorentzian 
k-symmetric spaces, Weyl tensor
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1. Предварительные сведения
Гладкое многообразие M с гладким невырож-

денным симметричным метрическим тензором g
называется псевдоримановым многообразием. Па-
ра (M, g) называется лоренцевым многообразием,
если g имеет сигнатуру (1, n− 1).

Гладкое многообразие M с псевдоримановой 
метрикой g называется k-симметрическим, если 
для связности Леви-Чивиты ∇ имеют место ра-
венства: ∇kR = 0, ∇k−1R ̸= 0, где k ≥ 1 и R —
тензор кривизны многообразия (M, g).

Ранее Каэн и Уоллах получили  с  точностью  
до изометрии классификацию односвязных ло-
ренцевых  симметрических  пространств  [1–3].  В 
списке содержатся пространства Каэна — Уолла-
ха: CWn+2(A) = (Rn+2, g) с метрикой

g = −2du(dv +Aijx
ixjdu) + δijx

ixj ,

где δij — символы Кронекера, Aij — матричные
константы.

Далее согласно теореме Ву [4] следует, что лю-
бое лоренцево многообразие локально изометрич-
но прямому произведению некоторого риманова 
многообразия и локально неразложимого лорен-
цева многообразия. Поэтому все рассматриваемые 
далее лоренцевы многообразия будем предпола-
гать локально неразложимыми. С учетом замеча-
ния для локально неразложимого лоренцева мно-
гообразия (M, g) размерности n + 2 ≥ 4 справед-
лива теорема [5, 6].

d

Теорема 1. Многообразие (M, g) является 2-
(3-)симметрическим тогда и только тогда, если 
оно локально изометрично обобщенному про-
странству Каэна — Уоллаха (CWn+2) порядка d =
1(d = 2).

Определение 1. Пусть (M, g) — (псев-
до)риманово многообразие. Тогда гладкое полное 
векторное поле K на M называется киллинговым

векторным полем, если производная Ли метриче-
ского тензора вдоль поля K равна нулю: LKg = 0,
где LKg — производная Ли метрического тензора
вдоль поля K.

Определение 2. Пусть (M, g) — (псев-
до)риманово многообразие. Тогда гладкое полное 
векторное поле K на M называется конформно 
киллинговым, если выполняется равенство LKg = 
f(p) · g, где p ∈ M, а f(p) — гладкая вещественная 
функция на многообразии.

Согласно результатам работы [5] в некоторой 
окрестности любой точки локально неразложи-
мого 2-симметрического лоренцева многообразия 
существует система координат (v, x1, x2,..., xn, u) 
такая, что метрика g имеет вид:

g = 2dudv +

n−2∑
i=1

(dxi)2 + (

n−2∑
i,j=1

Hij0x
ixj+

n−2∑
i=1

uHii1(x
i)2)du2, (1)

где H0 — симметрические постоянные матрицы
n × n, H1 — невырожденная диагональная мат-
рица.

Нетрудно видеть, что вид конформного мно-
жителя f(p)  в  уравнении LKg = f(p) · g  зависит 
от того, является ли тензор Вейля равным нулю.

Лемма. Тензор Вейля метрики (1) равен нулю
тогда и только тогда, когда все Hii1 равны между
собой, все Hii0 равны между собой, а при i ̸= j
имеем Hij0 = 0.

Доказательство. Тензор Вейля на многообра-

2
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зии с метрикой (1) принимает вид:

W =
1

n− 2
((2− n)(Hii1u+Hii0)+

n−2
j=1

(Hjj1u+Hjj0)) ·
n−2
i=1

(dudxidudxi+

dxidudxidu− dudxidxidu− dxidududxi)+

Hij0(1− δij)
n−2
i,j=1

(dudxidxjdu+ dxidududxj−

dudxidudxj − dxidudxjdu),

где δij — символы Кронекера.
Заметим, что при i ̸= j компоненты тензо-

ра Вейля при dudxidxjdu, dxidududxj , dudxidudxj

и dxidudxjdu равны Hij0. Следовательно, если
W = 0, то при i ̸= j имеем Hij0 = 0.

Все компоненты при dudxidudxi, dxidudxidu,
dudxidxidu и dxidududxi, с точностью до знака,
имеют следующий вид:

−Hii1u−Hii0 +
1

n− 2

n−2
j=1

(Hjj1u+Hjj0).

Приравняем к нулю коэффициент при u сво-
бодный член этого выражения:

−Hii1 +
1

n− 2

n−2
j=1

Hjj1 = 0;

−Hii0 +
1

n− 2

n−2
j=1

Hjj0 = 0.

Так как эти уравнения должны быть справед-
ливы при любых 1 ≤ i ≤ n2, то из них следует, что 
все Hii1 равны между собой и все Hii0 также 
равны. Лемма доказана.

2. Случай размерности пять
В окрестности некоторой точки p ∈ M рас-

смотрим уравнение LKg = f(p) · g в локальных
координатах (1).  Действуя как в [7],  положим f = 
dF (u)
du для некоторой функции F (u). Для простоты

положим x1 = x, x2 = y, x3 = z. Тогда получим
систему уравнений конформно киллинговых век-
торных полей в локальных координатах:



Uv = 0;

Ux +Xv = 0;Uy + Yv = 0;Uz + Zv = 0;

Xy + Yx = 0;Xz + Zx = 0;Zy + Yz = 0;

2Xx = f ; 2Yy = f ; 2Zz = f ;

Uu + Vv = f ;

HUx +Xu + Vx = 0;

HUy + Yu + Vy = 0;

HUz + Zu + Vz = 0;

−fH + 2HUu + 2Vu +XHx + Y Hy + ZHz+

UHu = 0,

(2)

где координаты искомого векторного поля K име-
ют вид: V = V (v, x, y, z, u), X = X(v, x, y, z, u),
Y = Y (v, x, y, z, u), Z = Z(v, x, y, z, u), U =
U(v, x, y, z, u), (V , X, Y , Z, U — гладкие функ-
ции), H = H110x

2 +2H120xy+2H130xz+H220y
2 +

2H230yz +H330z
2 + u(H111x

2 +H221y
2 +H331z

2).
Действуя как в [8, 9, 10], получаем решения:




U = F (u);

X = 1
2
dF (u)
du x+ C1y + C2z + b1(u);

Y = −C1x+ 1
2
dF (u)
du y + C3z + b2(u);

Z = −C2x− C3y +
1
2
dF (u)
du z + b3(u);

V = −db1(u)
du x− db2(u)

du y − db1(u)
du z

−x2+y2+z2

4
d2F (u)
du2 + C4,

(3)

где Ci — произвольные постоянные, а bi(u) —
гладкие функции, определяемые из системы диф-
ференциальных уравнений работы [11]. Из (2) по-
лучаем:

dF (u)

du
(u(H111x

2 +H221y
2 +H331z

2) +

H110x
2 +H220y

2 +H330z
2 + 2H120xy + 2H130xz +

2H230yz) + (
1

2

dF (u)

du
x+ C1y + C2z +

b1(u))(2H111ux+ 2H110x+ 2H120y + 2H130z) +

(−C1x+
1

2

dF (u)

du
y + C3z + b2(u))(2H221uy +

2H120x+ 2H220y + 2H230z) + (−C2x− C3y +

1

2

dF (u)

du
+ b3(u))(2H331uz + 2H130x+ 2H230y +

2H330z)− 2
d2b1(u)

du2
x− 2

d2b2(u)

du2
y − 2

d2b1(u)

du2
z −

x2 + y2 + z2

2

d3F (u)

du3
+ F (u)(H111x

2 +H221y
2 +

H331z
2) = 0

Отсюда и из результатов работы [9] следует,
что в случае нетривиального тензора Вейля мет-
рики (1) конформный множитель является посто-
янным. В конформно плоском случае ситуация
менее очевидна.

3. Пятимерный конформно плоский
случай

Применяя лемму, имеем:

g = 2dudv + dx2 + dy2 + dz2+

(b(x2 + y2 + z2) + au(x2 + y2 + z2))du2,

где a = H111 = H221 = H331 и b = H110 = H220 =
H330 произвольные постоянные. Тогда получим

3

( )dF u
du

1 ≤ i ≤ n-2
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дифференциальное уравнение относительно F (u)
следующего вида:

−1

2

d3F (u)

du3
+ 2

dF (u)

du
(au + b) + aF (u) = 0.

Из этого уравнения F (u) выражается как

F (u) = C1AiryAi(
au+ b

(−a)
2
3

)2+

C2AiryAi(
au+ b

(−a)
2
3

)AiryBi(
au+ b

(−a)
2
3

)+

C3AiryBi(
au+ b

(−a)
2
3

)2,

где  AiryAi  и  AiryBi  —  частные  решения  1-го   
и 2-го рода дифференциального уравнения Эйри: 
y′′ − uy = 0, определяемые несобственными ин-
тегралами [12]:

AiryAi(u) =
1

π

∫ +∞

0

cos(
x3

3
+ ux)dx.

AiryBi(u) =
1

π

∫ +∞

0

[exp(−x3

3
+ ux)+

sin(
x3

3
+ ux)]dx.

В данном случае векторное поле вида (3), где

b1(u) = C4AiryAi(
au+ b

(−a)
2
3

) + C5AiryBi(
au+ b

(−a)
2
3

),

b2(u) = C6AiryAi(
au+ b

(−a)
2
3

) + C7AiryBi(
au+ b

(−a)
2
3

),

b3(u) = C8AiryAi(
au+ b

(−a)
2
3

) + C9AiryBi(
au+ b

(−a)
2
3

),

являются решениями уравнения LKg = f(p)g для 
системы (1). Конформный множитель принимает 
вид:

f(u) =
2aC10AiryAi( au+b

(−a)
2
3
)AiryAi(1, au+b

(−a)
2
3
)

(−a)
2
3

+

2aC11AiryBi( au+b

(−a)
2
3
)AiryBi(1, au+b

(−a)
2
3
)

(−a)
2
3

+

2aC12AiryAi(1, au+b
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Заключение
Полученные результаты позволяют завершить

исследования работы [10] и построить новые
нетривиальные примеры конформно киллинго-
вых векторных полей с переменным конформным
множителем. Кроме того, разработанные методы
позволят получить многомерные аналоги постро-
енных примеров.
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