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Аннотация. Разработаны специализированная 
математическая модель и программа одномерного 
раскроя, ориентированные на производство оконных 
стеклопакетов. В основе решения лежит метод ветвей 
и границ, использующий на каждом шаге матричный 
симплекс-метод. Улучшение решения достигнуто од-
новременно за счет модификации целевой функции 
и упрощения системы ограничений — исключение 
нецелесообразных вариантов раскроя. При этом су-
щественно снижается размерность задачи и вместе 
с этим уменьшается время ее решения.

Авторами выполнена автоматизация этапов со-
ставления модели (основанной на генерации «матри-
цы раскроя») и поиска начального опорного плана. 
Факт существования допустимого базисного реше-
ния также приводит к экономии времени. 

Практическая значимость результатов заключа-
ется в повышении эффективности производствен-
ного проектирования. Это приводит к снижению 
затрат на закупку, обработку, транспортировку, хра-
нение и утилизацию материалов. Разработанные ме-
тоды и алгоритмы легко адаптируемы и применимы 
в других производственных процессах, где имеется 
одномерный раскрой, с дополнительными техноло-
гическими ограничениями.

Ключевые слова: задача одномерного раскроя, метод 
ветвей и границ, оптимизация производства, API 
сервис

Abstract. The paper presents the development 
of a specialized mathematical model and a one-
dimensional cutting program for production of double-
glazed windows. The solution is based on the branch 
and boundary method, which uses a matrix simplex 
method at each step. Simultaneous modification 
of the objective function and simplification of the system 
of constraints, i.e. elimination of inappropriate cutting 
options, help improve the developed solution. At the same 
time, the problem dimension and the time required 
to solve it reduce significantly. 

Authors have automated the stages of model engi-
neering (based on the „cutting matrix“ generation) 
and searching for an initial reference plan. The existence 
of a valid basic solution helps save the consumed time. 

The practical significance of the obtained results 
lies in improving the efficiency of production design. 
This leads to lowering the costs of purchase, processing, 
transportation, storage, and disposal of materials. 
The developed methods and algorithms are easily 
adaptable and applicable to other production processes 
with one-dimensional cutting when considering additional 
technological limitations.

Keywords: one-dimensional cutting problem, branch 
and boundary method, production optimization, API 
service
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Введение 
Для большого спектра производственных про-

цессов основные этапы связаны с раскроем матери-
алов. Моделирование размещения деталей на «карте 
раскроя» является важным этапом технологического 
процесса для экономии ресурсов. Рациональное рас-
положение деталей и последующий раскрой матери-
ала позволяют решить проблему экономии ресурсов.

Задача одномерного раскроя в случае одного вида 
материала изучается уже полвека. Она описывается 
моделью линейного целочисленного программирова-
ния [1]. В стандартной постановке эта задача рассма-
тривалась Л.В. Канторовичем, В.А. Залгаллером [1] 
и P. Gilmore, R. Gomory [2]. Эффективный алгоритм 
в случае раскроя материала смешанных длин в серий-
ном производстве предложен Г. Беловым [3]. Однако 
в отдельных случаях этот алгоритм оказался слиш-
ком трудоемким, чтобы быть практически полезным. 
Параллельно разрабатывались эвристические методы. 
Наиболее совершенными считаются генетические ме-
тоды для решения задачи раскроя материала одинако-
вой длины, но при этом можно получить только при-
ближенные решения, а для достижения приемлемого 
уровня точности время работы сопоставимо с време-
нем работы точных методов [4].

Далее рассматривается производственная ситуа-
ция, возникающая в условиях крупносерийного про-
изводства — раскрой профилей пластиковых окон. 
Материал для раскроя на детали заданных размеров 
поступает в виде хлыстов различных типоразмеров 
в заданном количестве. Множество типоразмеров со-
ставляют отрезы от стандартных материалов боль-
шого размера, а также сами стандартные материалы. 

Разработка специализированной математической 
модели и программного обеспечения (API сервиса) 
для решения данной задачи позволит получить реаль-
ный экономический эффект в форме снижения отхо-
дов, повысить оперативность и качество планирования 
и управления производственными процессами, сокра-
тить расход сырья, снизить себестоимость продукции.

Для достижения указанной цели решались следу-
ющие задачи: 

1) разработка математической модели задачи оп-
тимального одномерного раскроя профилей;

2) автоматизация генерации матрицы раскроя 
и составления опорного решения;

3) реализация алгоритма решения задачи о рас-
крое;

4) разработка API сервиса и тестирование его 
на реальных данных.

Итак, рассматривается задача одномерного рас-
кроя на производстве (классификация 1VDM 
по H. Dykhoff [5]), которая имеет следующие осо-
бенности:

— полосы раскраиваются не полностью; в резуль-
тате получаются остатки раскроя (хлысты), сумму ко-
торых необходимо минимизировать; 

— остатки материалов используются в следующих 
циклах раскроя;

— остатки можно ограничивать при генерации 
введением «плохих интервалов», в которых деталей 
при следующих раскроях заведомо не будет;

— самых больших стандартных материалов бес-
конечное количество (т.е. ограничения на их количе-
ство не учитываются).

Эти особенности требуют разработки специали-
зированных алгоритмов раскроя, существенно отли-
чающихся от известных стандартных алгоритмов ре-
шения задачи 1VDM.

Задачу формирования раскроя c учетом специ-
фики производства можно сформулировать следу-
ющим образом. Требуется определить оптимальный 
план раскроя профилей, при котором: минимизиру-
ется расход стандартных материалов и будут мини-
мальными остатки от разрезов материалов, а также 
минимизируется количество неиспользуемых хлы-
стов (остатков при раскрое материала).

В похожей постановке задача одномерного рас-
кроя материалов различных длин рассматривалась 
в работах [6, 7], где находится приемлемое прибли-
женное решение на основе гибридного алгоритма.

Для описания модели примем обозначения:
xij — количество единиц материала j, раскраивае-

мых по способу i;
bi — число изделий i-го типа, необходимое по за-

данию;
lj — длина изделия i-го типа;
dj — количество материала вида j;
ej — длина материала j-го типа;
τj — число исходных вариантов раскроя j-го ма-

териала;
yj — количество неиспользованных хлыстов j-го 

материала;
s — количество видов материалов;
nj — число способов раскроя j-го материала;
cij — величина остатка материала j при разреза-

нии способом i;
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i
jka  — число заготовок i-го типа в k-ом варианте 

раскроя j-го материала.

Разработка математической модели 
оптимального одномерного раскроя 
профилей пластиковых окон 
Рассмотрим ограничения в задаче раскроя профи-

лей пластиковых окон.
1. Ограничения на неотрицательность переменных:

                                        xij ≥ 0                                     (1)

2. Ограничения на количество используемого ма-
териала:

                 x1j + ∙∙∙ + xnj ≤ dj, j = 1, 2. ... , s                     (2)

Перейдем от неравенств к равенствам, добавив 
слева количество неиспользованных в будущем оп-
тимальном плане материалов yj:

               x1j + ∙∙∙ + xnj + yj = dj, j = 1, 2. ... , s.               (3)

3. Ограничения на комплектность:

1 1
1
( )

=

+ ⋅⋅⋅ +∑
s

j j
k j nk nj

j
a x a x = bk, k = 1, 2, ... , m.        (4)

В описанной постановке нужно минимизировать 
остатки всех материалов. Таким образом, целевая 
функция имеет вид: 

           
1 1 2

( )
= = =

= + →∑∑ ∑
sn s s

ij ij j j
i j j

f c x e y min ,

где первая компонента — суммарные остатки ма-
териалов, а вторая — сумма длин неиспользован-
ных хлыстов. Величина y1 исключена из целевой 
функции.

Также есть смысл игнорировать ограничение 
(3) для стандартных материалов, полагая их чис-
ло большим (y1 можно вычислить по оптимально-
му плану).

Заметим, что из (3) можно выразить переменные 
yj и получить следующее:

          
1 1 2 1

( ) ( – )
= = = =

= +∑∑ ∑ ∑
s sn ns s

ij ij j j ij
i j j i

f c x e d x .

Итоговый вид целевой функции для математиче-
ской модели оптимального одномерного раскроя про-
филей может быть записан в виде:

             0
1 1

( , )
= =

= + →∑∑
sn s

ij j ij ij
i j

f x y p x f min,

где коэффициенты функции 0 2
,

=
=∑ s

j j ijj
f e d p  = {cij, 

при j = 1; cij – ej, при j ≠ 1}, и задача дополняется огра-
ничениями (1), (3), (4).

Анализ и выбор методов решения задачи 
Вычислительные мощности портативных 

устройств на данный момент времени находятся 
на достойном уровне, тем не менее ряд методов по-
просту не подойдет для реализации алгоритма по-
строения плана линейного раскроя. Отметим, что раз-
мер реальной задачи достаточно большой, но, однако, 
позволяет использовать затратные по памяти и време-
ни выполнения алгоритмы, дающие точное решение. 

Очевидно, что описанная выше задача не позво-
ляет использовать метод полного перебора вариантов 
раскроя, который даже на относительно небольших 
входных данных требует неприемлемого времени, 
а динамическое программирование требует сильно 
больших затрат ресурсов оперативной памяти [8]. 
Эвристические методы не дают оптимального реше-
ния. В условиях реального производства было отме-
чено, что при их использовании со временем идет на-
копление «неиспользованных остатков».

Метод ветвей и границ (МВГ), реализованный 
с использованием симплекс-метода, для получения 
плана линейного раскроя в рассматриваемом слу-
чае является наиболее подходящим. Поскольку его 
результат является оптимальным, сам вычислитель-
ный процесс не особо сложный, и при правильной 
реализации можно сохранить достаточно большой 
объем оперативной памяти. Для решения задачи был 
использован матричный вариант симплекс-мето-
да, описанный в работе [9, с. 25–29]. Такой вариант 
удобен, поскольку на определенной итерации необ-
ходимо знание лишь базисных столбцов матрицы 
ограничений (на каждой итерации данные берутся 
из исходной задачи), что существенно экономит па-
мять при реализации.

Общее решение модели, включая этапы, описан-
ные ниже, реализовано на языке программирования 
С++. Для реализации МВГ использована библиотека 
BNB-Solver, которая позволяет распараллелить про-
цесс, тем самым дополнительно ускоряя решение [10].

Этапы подготовки матрицы 
и выбора опорного решения
I ЭТАП. Чтобы перейти к решению методом вет-

вей и границ, требуется множество «карт раскроя», 
которое можно перебирать. Каждая единица матери-
ала j может быть раскроена n способами, причем ис-
пользование способа k дает j

ika  единиц i-х изделий. 
Итак, ограничение (4) можно составить, используя 
матрицу «карт раскроя», которая генерируется следу-
ющим алгоритмом:
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Отсортировать все изделия по убыванию длины.
Для каждого материала:
пока не получен нулевой вектор:
пока хватает длины материала, для каждого из-

делия, где не был достигнут максимум длины отре-
занных деталей:

увеличивать количество текущего изделия в рас-
крое.

Уменьшить количество самых длинных матери-
алов на 1.

Для того чтобы снизить размер задачи, нужно ис-
ключить из множества «карт раскроя» те способы, 
при которых остаток материала попадает в интерва-
лы, которые заведомо не встретятся в следующих за-
казах в качестве изделия.

II ЭТАП. Матрица Asm = ( j
ika ), если ее разложить 

по способам разреза, примет вид нижнего-левого бло-
ка матрицы Â симплекс-таблицы для описанной мо-

дели. Эту матрицу с количеством столбцов ( )∗sn s  
можно дополнить единичной матрицей Es–1, соответ-
ствующей переменным yj. Таким образом, верхний 
прямоугольник матрицы Â в описанной математиче-
ской модели оптимального одномерного раскроя вы-
ражает ограничения на материалы, а нижний — 
на изделия.  Пример матрицы предс тавлен 
на рисунке. Здесь столбцы характеризуют количе-
ство деталей, последний столбец — остатки, а стро-
ка — «карту раскроя» для одного из материалов. Так 
как ограничения на количество самых больших стан-
дартных материалов не налагались, то первое огра-
ничение, соответствующее первой строке таблицы, 
из модели удалено.

Описанный выше процесс составления матрицы 
для математической модели одномерного раскроя 
профилей пластиковых окон автоматизирован в раз-
работанном авторами API сервисе.

Общий вид матрицы для модели и схема выбора базисных столбцов:
желтые блоки в точности содержат единицы, 

зеленые и голубые блоки — нули, 
персиковый блок содержит единичные столбики

III ЭТАП. Следующий момент касается выбора на-
чального опорного плана. Заметим, что столбцы y2 – ys 
однозначно составляют часть базисных столбцов. 
Далее заметим, что среди способов разреза первого 
самого большого материала существует m способов, 
с помощью которых получается только один вид из-
делия. Им соответствуют еще m базисных столбцов. 
Очевидно, что из указанных столбцов можно соста-
вить начальный опорный план для решения сим-
плекс-методом (на рисунке базисные столбцы выде-
лены красной рамкой). Кроме того, по смыслу задачи 
очевидно, что этот план не является оптимальным.

После выполнения указанных трех этапов запу-
скается метод ветвей и границ.

Тестирование сервиса
Работоспособность сервиса была протестирована 

на реальных данных компании «ОКСОФТ» (на двух 
десятках примеров). Входные данные и характеристи-
ки результатов тестирования для двух наиболее ти-
пичных тестов представлены в таблице. Результаты 
проведенных тестов показали, что сервис работа-
ет адекватно и вычисления по алгоритму дают точ-
ное решение. 
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Примеры входных данных и характеристики результатов тестирования
Данные

Результаты
тестированияматериалы требуемые детали

длина количество длина количество
6000
4000
2000
1500

999
7
4

10

1700
1500
1400
1000
700

4
5
5
5
6

Время работы: 2,5 сек.
Сумма длин материалов: 51000
Сумма длин деталей: 30500
Затраты: 20500 мм
Количество колонок «матрицы раскроя»: 248
Стандартные материалы (6000) не были использованы!!

6000
4000
4003
2000
2002
1500
1400

999
7
4

10
2
3
2

1700
1500
1400
1000
1200
700

4
5
5
5
6
6

Время работы: 3,1 сек.
Сумма длин материалов: 75316
Сумма длин деталей: 34000
Затраты: 24400 мм
Количество колонок «матрицы раскроя»: 322
Стандартные материалы (6000) не были использованы!!

Заключение 
Таким образом, для типичных случаев сервис вы-

полняет расчет за приемлемое время, в среднем около 
3 секунд. Предельный размер задачи ограничивается 
емкостью оперативной памяти и требуемым операто-

ром временем вычисления. В случае превышения мак-
симально допустимого времени расчета задача может 
быть разбита на две подзадачи и более.

Разработанный сервис используется при оптими-
зации производства в компании «ОКСОФТ».
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