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Аннотация. Уравнение потока Риччи впервые ис-
следовалось Р. Гамильтоном для связности Леви-Чивиты 
и играет важную роль в римановой геометрии. Класс по-
лусимметрических связностей описан Э. Картаном и со-
держит связность Леви-Чивиты. Поэтому естественным 
является рассмотрение потока Риччи на римановых 
многообразиях с полусимметрической связностью.

Известно, что тензор Риччи полусимметрической 
связности, вообще говоря, не является симметриче-
ским, поэтому необходимо рассматривать симметри-
ческую часть тензора Риччи и симметрический поток 
Риччи относительно этого тензора.

В данной работе изучается симметрический по-
ток Риччи на трехмерных унимодулярных группах 
Ли с полусимметрической связностью. Уравнение 
потока в системе координат Дж. Милнора приводит-
ся к системе алгебраических и дифференциальных 
уравнений. Решая последовательно сначала подсисте-
му из алгебраических уравнений и после подставляя 
полученное решение в систему дифференциальных 
уравнений, мы находим симметрический поток Риччи 
на трехмерной унимодулярной группе с метрикой 

Abstract. The Ricci flow equation was first studied 
by R. Hamilton for the Levi-Civita connection. It plays 
an important role in Riemannian geometry. The class 
of semi-symmetric connections, described first 
by E. Cartan, contains the Levi-Civita connection. Thus, 
it is natural to consider the Ricci flow on Riemannian 
manifolds with a semi-symmetric connection.

It is known that the Ricci tensor of a semi-symmetric 
connection is, generally speaking, not symmetric. 
Therefore, it is necessary to consider the symmetric 
part of the Ricci tensor and the symmetric Ricci flow 
with respect to this tensor.

This paper studies the symmetric Ricci flow 
on three-dimensional unimodular Lie groups 
with a semi-symmetric connection. The flow equation 
in the J. Milnor coordinate system is reduced to a system 
of algebraic and differential equations. The symmetric 
Ricci flow on a three-dimensional unimodular group 
with the J. Milnor metric with respect to a semi-symmetric 
connection is found by sequentially solving the subsystem 
of algebraic equations and then substituting the obtained 
solution into the system of differential equations.
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Дж. Милнора относительно полусимметрической 
связности. В качестве тестового примера рассматри-
вается трехмерная группа Гейзенберга. 

Ключевые слова: симметрический поток Риччи, трех-
мерные унимодулярные группы Ли, группа Гейзенберга

The three-dimensional Heisenberg group is considered 
as a test example.
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