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Аннотация. Представлен ряд точных решений 
уравнений движения атомов в ОЦК кристалле, на-
зываемых делокализованными нелинейными ко-
лебательными модами (ДНКМ). Точные решения 
получены из анализа только точечной группы симме-
трии ОЦК решетки, а следовательно, они существу-
ют для любого типа межатомных взаимодействий 
и для любой амплитуды. Все рассмотренные ДНКМ 
являются колебательными модами с одной степенью 
свободы. Рассчитаны зависимости частоты от ампли-
туды ДНКМ при описании взаимодействия между ато-
мами потенциалом Ферми — Паста — Улама с жест-
ким типом нелинейности с учетом взаимодействий 
до четвертого соседа. 34 исследованных ДНКМ раз-
биты на семь групп, внутри каждой группы колеба-
тельные моды имеют одинаковую частоту в преде-
ле малых амплитуд. Тот факт, что различные ДНКМ 
могут иметь одинаковую частоту при малых ампли-
тудах колебаний, объясняется тем, что некоторые 
из них могут быть представлены как суперпозиция 
других после наложения на них преобразования то-
чечной симметрии. Полученные результаты могут

Abstract. The article presents several exact solutions 
of the equations of motion of atoms in a BCC crystal, 
called delocalized nonlinear vibrational modes (DNVMs). 
The exact solutions are obtained by analyzing the BCC 
lattice point symmetry group only, therefore, they exist 
for any type of interatomic interactions and for any 
amplitudes. All studied DNVMs are vibrational modes 
with one degree of freedom. The dependence between 
frequency and amplitude of DNVMs is calculated 
using the Fermi-Pasta-Ulam potential with hard type 
nonlinearity when considering interatomic interactions 
up to the fourth neighbor. There are seven groups 
among the 34 studied DNVMs with the same frequency 
of vibrational modes in the small amplitude limit within 
each group. This fact is explained by some DNVMs being 
superpositions of others after applying point symmetry 
transformations. The obtained results can be to test 
the interatomic potentials of BCC crystals.
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быть использованы для тестирования межатомных 
потенциалов ОЦК кристаллов.
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Введение
Кристаллические решетки допускают точные ди-

намические решения в виде делокализованных нели-
нейных колебательных мод (ДНКМ). Такие решения 
могут быть получены с учетом только пространствен-
ной группы симметрии решетки [1–5] и, таким обра-
зом, существуют для любого типа межатомных взаи-
модействий даже при больших амплитудах.

ДНКМ хорошо изучены для нелинейных цепочек 
[2–6]. Большинство ДНКМ являются стоячими вол-
нами, но волна с тремя частицами на период является 
бегущей волной [7], которая связана с локализован-
ными движущимися возбуждениями с «магическим» 
числом волны [8–10].

В большинстве случаев ДНКМ изучаются в решет-
ках с взаимодействием ближайших соседей или с уче-
том первых и вторых соседей, например, для квадрат-
ной решетки, поскольку эта решетка нестабильна, если 
не задействованы связи вторых соседей. Существует 
тесная связь между ДНКМ и пространственно лока-
лизованными нелинейными колебательными модами, 
называемыми дискретными бризерами, или внутрен-
ними локализованными модами [11–16].

Взаимодействия дальнего радиуса действия были 
включены во многие работы, анализирующие нели-
нейную динамику решеток. В частности, дальнодей-
ствующие взаимодействия были учтены при в ДНК 

[17–22], в цепях с кулоновскими силами [23, 24] и дис-
персионными взаимодействиями [25]. Влияние даль-
нодействующих взаимодействий на перенос теп-
ла в цепочках рассматривалось в работах [26–29]. 
Подвижность дискретных дыхательных аппаратов 
увеличивается в решетках с дальнодействующими 
взаимодействиями [30, 31].

Материалы и методы исследования
Здесь представлен класс диктуемых симметри-

ей решетки точных решений нелинейных уравнений 
движения ОЦК решетки. В пионерских работах такие 
решения назывались кусты нелинейных нормальных 
мод (КННМ) [32], но в контексте кристаллических 
решеток часто используется термин ДНКМ. Размер 
вычислительной ячейки для исследования зональ-
но-граничных ДНКМ равен 2h×2h×2h. Координаты 
16 атомов в ячейке приведены на рисунке 1.

Зонально-граничные ДНКМ возбуждаются путем 
придания частицам начальных смещений в соответ-
ствии с определенными схемами, показанными на ри-
сунках 2–8. Начальные скорости частиц равны нулю. 
Траектории колеблющихся частиц показаны черным 
цветом. Для частиц, изображенных пустыми кружка-
ми, w-компонента начального смещения равна нулю, 
и она положительна (отрицательна), если частица от-
мечена точкой (крестиком).

Рис. 1. Координаты атомов в кубической трансляционной ячейке, имеющей размеры 2h×2h×2h. 
Ячейка включает 16 атомов
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Все ДНКМ являются колебательными модами с од-
ной степенью свободы. Это означает, что длина век-
тора начального смещения равна либо нулю либо A, 
причем последняя величина является амплитудой 

ДНКМ. Частицы с нулевым начальным смещением 
остаются в состоянии покоя, в то время как другие 
частицы колеблются.

Рис. 2. Три ДНКМ группы G1 

Все ДНКМ разделены на семь групп, обозначен-
ных с G1 по G7. Численно определенные частотные 
характеристики для ДНКМ показаны на рисунке 9 
(группы G1, G2 и G3), рисунке 10 (группы G4 и G5) 
и рисунке 11 (группы G6 и G7). Как видно из рисун-
ков 9, 10 и 11, ДНКМ, принадлежащие к одной груп-
пе, имеют одинаковую частоту колебаний в пределе 
малых амплитуд. При больших амплитудах частота 
мод одной группы различна. Различные ДНКМ од-

ной группы имеют одинаковые частоты колебаний 
при малых амплитудах, поскольку более сложные 
ДНКМ являются суперпозициями простых ДНКМ. 
Например, ДНКМ G1b на рисунке 2 является суперпо-
зицией ДНКМ G1a и ее вращения на π/2 вокруг оси z; 
ДНКМ G1c — это сумма G1b и G1a, повернутых на π/2 
вокруг оси y. Все ДНКМ демонстрируют ангармонич-
ность жесткого типа, которая заключается в увеличе-
нии частоты с ростом амплитуды.

Рис. 3. Три ДНКМ группы G2

Рис. 4. Четыре ДНКМ группы G3
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Рис. 5. Четыре ДНКМ группы G4

Рис. 6. Пять ДНКМ группы G5

Рис. 7. Пять ДНКМ группы G6
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Рис. 8. Десять ДНКМ группы G7

Рис. 9. Частотные характеристики ДНКМ групп G1, G2 и G3
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Рис. 10. Частотные характеристики ДНКМ групп G1, G2 и G3

Рис. 11. Частотные характеристики ДНКМ групп G6 и G7

Заключение
Проанализированы точные решения уравнений 

движения решетки β-FPUT в виде ДНКМ с учетом 
дальнодействующих взаимодействий. Картины на-
чальных смещений атомов для 34 исследованных 
ДНКМ показаны на рисунках 2–8. Атомы с такими 

начальными смещениями и нулевыми начальными 
скоростями будут колебаться, сохраняя паттерн, не-
зависимо от используемого межатомного потенциа-
ла и при любой амплитуде A (при больших A может 
развиться модуляционная неустойчивость ДНКМ). 
С другой стороны, частотная характеристика ДНКМ 
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зависит от межатомного потенциала. Частотные ха-
рактеристики ДНКМ в широком диапазоне ампли-
туд колебаний были рассчитаны численно и постро-
ены на рисунках 9–11.

Частоты ДНКМ в малоамплитудном пределе были 
получены аналитически. ДНКМ делятся на семь групп 
в соответствии с их частотой в малоамплитудном пре-
деле. ДНКМ, принадлежащие к одной группе, одина-
ково деформируют межатомные связи разной длины 
в гармоническом приближении, но когда в дело всту-

пает ангармоничность, потенциальные энергии, запа-
сенные связями разной длины, становятся различны-
ми для ДНКМ одной группы.

Частотные характеристики ДНКМ, рассчитанные 
методом первопринципного моделирования, обеспе-
чивают строгую проверку межатомных потенциалов. 
Исследуемые ДНКМ являются естественными нели-
нейными колебательными модами бислойной решет-
ки, поэтому любой надежный межатомный потенци-
ал должен воспроизводить частотный отклик ДНКМ.
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