
35

Моделирование течения тонкого слоя жидкости...

Научная статья
УДК 519.6+532.5
DOI: 10.14258/izvasu(2025)1-04

Моделирование течения тонкого слоя жидкости...
по наклонной подложке на основе уравнений 
Навье — Стокса в случае больших чисел Рейнольдса
Екатерина Валерьевна Ласковец

Алтайский государственный университет, Барнаул, Россия, 
katerezanova@mail.ru

Original article
Modeling of Thin Liquid Layer Flow on an Inclined Substrate 
Based on the Navier — Stokes Equations in the Case of Large 
Reynolds Numbers
Ekaterina V. Laskovets

Altai State University, Barnaul, Russia, katerezanova@mail.ru

Известия Алтайского государственного университета. 2025. № 1 (141). С. 35–40.
Izvestiya of Altai State University. 2025. No 1 (141). Р. 35–40.

© Ласковец Е.В., 2025

Аннотация. Построена математическая модель 
для изучения течения тонкого слоя жидкости по на-
клоненной неравномерно нагретой подложке. В каче-
стве основных уравнений выбраны система уравне-
ний Навье — Стокса и переноса тепла и соотношения, 
представляющие собой обобщенные кинематическое, 
динамическое и энергетическое условия на грани-
це с учетом массопереноса. Рассматривается поста-
новка задачи для случая больших чисел Рейнольдса. 
Длинноволновое приближение позволяет получить 
аналитические решения для главных членов разложения 
по степеням малого параметра задачи. Проведен пара-
метрический анализ, позволяющий выявить факторы, 
влияющие на характер течения наибольшим образом. 
Получено эволюционное уравнение для определения по-
ложения границы раздела сред. Построен алгоритм чис-
ленного решения для задачи о периодическом стекании 
жидкости по наклонной твердой подложке. Численная 
схема решена с помощью метода прогонки и прогонки 
с параметром. Изучено влияние угла наклона твердой 
подложки на течение жидкого слоя.

Ключевые слова: тонкий слой, обобщенные условия, 
параметрический анализ, эволюционное уравнение, 
численный алгоритм

Abstract. The paper deals with the mathematical 
model constructed to study the flow of a thin liquid 
layer on an inclined, unevenly heated solid substrate. 
The system of Navier — Stokes and heat transfer equations 
representing the generalized kinematic, dynamic, and 
energy conditions at the boundary, including mass 
transfer, are selected as the governing equations. 
The paper considers a two-dimensional formulation 
of the problem at large Reynolds numbers. The long-wave 
approximation allows one to obtain analytical solutions 
for the main terms of the expansion in powers of the small 
parameter of the problem. The conducted parametric 
analysis helps identify the factors that influence the nature 
of the flow the most. Then, the evolution equation to 
determine the position of the liquid-gas interface is 
obtained. The presented developed algorithm is capable 
to solve numerically the problem of periodic liquid 
flow down an inclined solid substrate. The solution is 
obtained using the sweeping and parameter sweeping 
methods. The influence of solid substrate inclination angle 
on the liquid layer flow is investigated.

Keywords: thin layer, generalized conditions, parametric 
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