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Аннотация. Стационарный вариант модели рас-
пространения космических лучей в Галактике ши-
роко используется для интерпретации наблюдаемых 
спектров космических лучей. В работе проводится 
анализ возможности его применения в случае диф-
фузии частиц в резко-неоднородной межзвездной 
среде. Получено аналитическое решение уравнения 
неклассической диффузии, выраженное через устой-
чивые распределения. Показано, что в стационарном 
случае не удается описать одну из основных особен-
ностей наблюдаемого спектра космических лучей — 
излом. Установлено, что с ростом энергии убывание 
концентрации частиц происходит быстрее, чем в мо-
дели нормальной диффузии. Для понимания дета-
лей возникновения этой разницы выполнен анализ 
модификации спектра при переходе от нестационар-
ной модели к стационарной в случае импульсного ис-
точника. Исследовано влияние непрерывных потерь 
энергии частицами на форму спектра в стационарном 
варианте модели. Показано, что при E>102 ГэВ влия-
нием потерь энергии можно пренебречь. Сделаны вы-
воды о применимости модели стационарной неклас-
сической диффузии к описанию экспериментальных

Abstract. The stationary model of cosmic ray 
propagation in the Galaxy is widely used to interpret 
observed cosmic ray spectra. The paper analyzes 
the applicability of this model for the case of particle 
diffusion in a highly inhomogeneous interstellar medium. 
The analytical solution of the non-classical diffusion 
equation, expressed in terms of stable distributions, is 
obtained.  Also, the impossibility to describe the observed 
cosmic ray spectrum break is shown in the paper. It is found 
that when energy increases, the particle concentration 
decreases faster than for the case with the normal 
diffusion model. To understand this phenomenon, 
spectrum modifications for the pulsed source case are 
analyzed in transition from the non-stationary model 
to the stationary one. The impact of progressive energy 
loss by particles on stationary model spectrum shapes is 
investigated. It is shown that energy losses are negligible 
at E>102 GeV. The stationary non-classical diffusion model 
is concluded to be applicable to describe experimental 
cosmic ray fluxes observed on Earth.
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пенным по жесткости спектром инжекции частиц

S(r, R) = Sc

(
R

1 ГВ

)−γ

δ(r). (5)

В результате получаем
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Наконец, принимая во внимание, что преоб-
разование Меллина трехмерного сферически-
симметричного устойчивого распределения дает-
ся равенством [14]
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находим окончательное выражение для концен-
трации космических лучей в случае стационарно-
го источника
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Анализ полученного выражения для спектра
приводит к следующим выводам:

• спектр не имеет излома; показатель спектра
частиц η = γ+δ в галактической среде фрак-
тального типа совпадает с показателем моде-
ли нормальной диффузии;

• стационарная модель, не воспроизводит на-
блюдаемый спектр, имеющий излом;

• фрактальность среды изменяет характер
пространственного распределения, вместо
закона (1/r) в модели нормальной диффузии
имеем (1/r)3−α, т.е. убывание концентрации
c большей скоростью.

2. Модификация спектра частиц при пе-

реходе от нестационарного спектра к

стационарному при α = 1
Сопоставление показателя спектра космиче-

ских лучей от стационарного источника (7) с по-
казателями спектра от точечного мгновенного ис-
точника при R ≫ Rk и R ≪ Rk (Rk жесткость,

при которой в спектре космических лучей имеет-
ся излом), показывает, что в стационарном слу-
чае в спектре остается лишь высокоэнергичная
часть решения. Чтобы глубже понять основные
особенности модификации спектра в среде с по-
летами Ле́ви, рассмотрим переход от нестационар-
ного случая к стационарному. Расчеты будем про-
водить для частного случая α = 1, поскольку при
этом значении параметра α решение нестационар-
ной задачи записывается в элементарных функци-
ях. Концентрация частиц от точечного импульс-
ного источника при α = 1 описывается выраже-
нием [10]
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×
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Здесь T � время инжекции частиц в источнике.

Если для наблюдаемого спектра использовать
представление N = N0R

−η(T ), то из (8) находим:

η(T ) = γ + δ −
2δ(

T 2D2
0

r2
R2δ + 1

) . (9)

Из (9) нетрудно получить, что при R ≪ Rk и
R ≫ Rk показатели спектра равны, соответствен-
но,

ηR≪Rk
≈ γ − δ,

ηR≫Rk
≈ γ + δ,

причем Rk(T ) = (r�(TD0))
1/δ

. Важным резуль-
татом является вывод, что в точке Rk(T ) показа-
тель наблюдаемого спектра η(T ) равен показате-
лю спектра γ инжектируемых источником частиц.

Стационарное решение N(r, R) связано
с нестационарным соотношением N(r, R) =
lim

T→∞
N(r, T, R). Выполняя предельный переход

в (8) и (9) , получаем

N(r, R) =
SиR

−γ−δ

2π2D0r2
,

η = lim
T→∞

η(T ) = γ + δ,

следующие из (7) при α = 1. Осуществляя пре-

дельный переход в Rk(T ) = (r�(TD0))
1/δ

, нахо-
дим, что Rk = lim

T→∞
Rk(T ) → 0. Другими слова-

ми, при увеличении времени функционирования
источника точка излома смещается в область ма-
лых жесткостей. Характер модификации спектра
при увеличении T (T6 > T5 > T4 > T3 > T2 > T1)
показан на рисунке 1.
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