Evolution of the Lamellar Pearlite Structure of Rail Steel under Tension

УДК 539.27:669.148

  • K.V. Aksenova Siberian State Industrial University (Novokuznetsk, Russia) Email: 19krestik91@mail.ru
  • V.E. Gromov Siberian State Industrial University (Novokuznetsk, Russia) Email: gromov@physics.sibsiu.ru
  • Yu.F. Ivanov Institute of High Current Electronics SB RAS (Tomsk, Russia) Email: yufi55@mail.ru
  • E.S. Vaschuk Prokopyevsk Branch of T.F. Gorbachev Kuzbass State Technical University (Prokopyevsk, Russia) Email: vashuk2012@bk.ru
  • M.A. Porfiriev Siberian State Industrial University (Novokuznetsk, Russia) Email: mporf372@gmail.com
Keywords: deformation, uniaxial tension, evolution of steel structure, dislocations, cementite, lamellar pearlite

Abstract

In this paper, the properties of rail steel subjected to fracture under uniaxial tension deformation are studied. Mechanical properties of rail steel, defective substructure of lamellar pearlite, and fracture surface of rail steel are investigated using methods of modern physical materials science.

Tensile strength is found to vary from 1247 to 1335 MPa, and the fracture strain of the samples changes from 0.22 to 0.26. The deformation of the rail steel is accompanied by the process of breaking the ferrite plates into fragments by low angle boundaries along with the significant increase in the scalar dislocation density to 7.9×1010 cm-2 (the scalar dislocation density of the original rail steel is 3.2 ×1010 cm-2). Also, there is a formation of internal stress fields appearing in the form of bend extinction contours. The sources of stress fields are identified. It is revealed that cementite plates are fractured by cutting and dissolution with subsequent transfer of carbon to ferrite plates by moving dislocations and formation of round-shaped nanodimensional (8.3 nm) round shaped particles of tertiary cementite. It is shown that the dissolution of cementite plates is accompanied by fragmentation (into coherent scattering regions with an average size of 9.3 nm).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

K.V. Aksenova, Siberian State Industrial University (Novokuznetsk, Russia)

кандидат технических наук, доцент кафедры естественно-научных дисциплин им. проф. В.М. Финкеля

V.E. Gromov, Siberian State Industrial University (Novokuznetsk, Russia)

доктор физико-математических наук, профессор, заведующий кафедрой естественно-научных дисциплин им. проф. В.М. Финкеля

Yu.F. Ivanov, Institute of High Current Electronics SB RAS (Tomsk, Russia)

доктор физико-математических наук, профессор, главный научный сотрудник

E.S. Vaschuk, Prokopyevsk Branch of T.F. Gorbachev Kuzbass State Technical University (Prokopyevsk, Russia)

кандидат технических наук, доцент кафедры естественно-научных дисциплин 

M.A. Porfiriev, Siberian State Industrial University (Novokuznetsk, Russia)

соискатель кафедры естественно-научных дисциплин

References

Yuriev A.A., Ivanov Yu.F., Gromov V.E., Rubannikova Yu.A., Starostenkov M.D., Tabakov P.Y. Structure and properties of lengthy rails after extreme long-term operation. Millersville, PA, USA: Materials Research Forum LLC, 2021.

Громов В.Е., Перегудов О.А., Иванов Ю.Ф., Коновалов С.В., Юрьев А.А. Эволюция структурно-фазовых состояний металла рельсов при длительной эксплуатации. Новосибирск, 2017.

Konieczny J., Labisz K. Structure and properties of the S49 rail after a long term outdoor exposure // Advances in Science and Technology Research Journal. 2022. Vol. 16 (2).

Wang Y., Tomota Y., Harjo S., Gong W., Ohmuraa T. In-situ neutron diffraction during tension-compression cyclic deformation of a pearlite steel // Materials Science and Engineering: A. 2016. Vol. 676.

Pan R., Ren R., Chen C., Zhao X. Formation of nanocrystalline structure in pearlitic steels by dry sliding wear // Materials Characterization. 2017. Vol. 132.

Kapp M.W., Hohenwarter A., Wurster S., Yang B., Pippan R. Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel // Acta Materialia. 2016. Vol. 106.

Raabe D., Kumar R. Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling // Scripta Materialia. 2012. Vol. 66.

Skakov МХ, Uazyrkhanova G.K., Popova N.A., Scheffler M. Influence of heat treatment and deformation on the phase-structural state of steel 30CrMnSiA // Key Engineering Materials. 2013. Vol. 531-532.

Ivanisenko Y., Kulagin R., Fedorov V., Mazilkin A., Scherer T., Baretzky B., Hahn H. High Pressure Torsion Extrusion as a new severe plastic deformation process // Materials Science and Engineering: A. 2016. Vol. 664.

Fang F., Zhao Y., Liu P., Zhou L., Hub X., Zhou X., Xie Z. Deformation of cementite in cold drawn pearlitic steel wire // Materials Science and Engineering: A. 2014. Vol. 608.

Ning Jiang-li, Courtois-Manara E., Kurmanaeva L., Ganeev A.V., Valiev R.Z., Kubel C., Ivanisenko Yu. Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion // Materials Science and Engineering: A. 2013. Vol. 581.

Tung P.-Y., Zhou X., Mayweg D., Morsdorf L., Herbig M. Under-stoichiometric cementite in decomposing binary Fe-C pearlite exposed to rolling contact fatigue // Acta Materialia. 2021. Vol. 216.

Egerton F.R. Physical Principles of Electron Microscopy. Basel: Springer International Publishing, 2016.

Kumar C.S.S.R. Transmission Electron Microscopy. Characterization of Nanomaterials. New York : Springer, 2014.

Carter C.B., Williams D.B. Transmission Electron Microscopy. Berlin : Springer International Publishing, 2016.

Иванов Ю.Ф., Громов В.Е., Аксенова К.В., Кузнецов Р.В., Кормышев В.Е., Ващук Е.С. Эволюция структуры рельсовой стали при сжатии // Деформация и разрушение материалов. 2022. № 8.

Фрактография и атлас фрактограмм : справ. изд. / Пер с англ. ; Под ред. Дж. Феллоуза. М., 1982.

Конева Н.А., Тришкина Л.И., Козлов Э.В. Физика субструктурного и зернограничного упрочнения // Фундаментальные проблемы современного материаловедения. 2014. Т. 11. № 1.

Счастливцев В.М., Мирзаев А.А., Яковлева И.Л., Окишев К.Ю., Табатчикова Т.И., Хлебникова Ю.В. Перлит в углеродистых сталях. Екатеринбург, 2006.

Panin V.E., Egorushkin VE., Panin A.V, Chernyavskii A.G. Plastic distortion as a fundamental mechanism in nonlinear mesomechanics of plastic deformation and fracture // Physical Mesomechanics. 2016. Vol. 19. № 3.

Григорович К.В., Громов В.Е., Кузнецов Р.В., Иванов Ю.Ф., Шлярова Ю.А. Формирование тонкой структуры перлитной стали при сверхдлительной пластической деформации // Доклады Российской академии наук. Физика, технические науки. 2022. Т. 503.

Li Y.J., Choi P., Borchers C., Westerkamp S., Goto S., Raabe D., Kirchheim R. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite // Acta Materialia. 2011. Vol. 59.

Gavriljuk V.G. Decomposition of cementite in pearlite steel due to plastic deformation // Materials Science and Engineering: A. 2003. Vol. 345.

Languillaume J., Kapelski G., Baudelet B. Cementite Dissolution in Heavily Cold Drawn Pearlitic Steel Wires // Acta Materialia. 1997. Vol. 45. № 3.

Sauvage X., Copreaux J., Danoix F., Blavette D. Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels // Philosophical Magazine A. 2000. Vol. 80.

Published
2023-03-28
How to Cite
Aksenova K., Gromov V., Ivanov Y., Vaschuk E., Porfiriev M. Evolution of the Lamellar Pearlite Structure of Rail Steel under Tension // Izvestiya of Altai State University, 2023, № 1(129). P. 11-17 DOI: 10.14258/izvasu(2023)1-01. URL: http://izvestiya.asu.ru/article/view/%282023%291-01.

Most read articles by the same author(s)