Об операторе секционной кривизны на трехмерных группах Ли с левоинвариантной лоренцевой метрикой

С.В. Клепикова, О.П. Хромова

Аннотация


Изучение свойств операторов кривизны представляет интерес в понимании геометрического и топологического строения однородного (псевдо)риманова многообразия. В однородном случае хорошо известны результаты Дж. Милнора, В.Н. Берестовского, Е.Д. Родионова, В.В. Славского о связи между кривизной Риччи, одномерной кривизной и топологией однородного римано-ва пространства. Дж. Милнор исследовал кривизны левоинвариантных римановых метрик на группах Ли. Задача о предписанных значениях оператора Риччи на трехмерных римановых локально-однородных пространствах и трехмерных метрических группах Ли была решена О. Ковальским и С. Никшевич. Аналогичные результаты для операторов одномерной и секционной кривизны были получены Д.Н. Оскорбиным, Е.Д. Родионовым, О.П. Хромовой. В случае левоинвариантных лоренцевых метрик на группах Ли ситуация представляется менее очевидной. В случае левоинвариантных лоренцевых метрик на трехмерных группах Ли известна работа Дж. Кальварузо, О. Ковальского, в которой исследуется задача о существовании группы Ли с левоинвариантной лоренцевой метрикой и заданными значениями спектра оператора Риччи. В данной работе решена задача о предписанных значениях оператора секционной кривизны на трехмерных метрических группах Ли.

Ключевые слова


алгебры Ли; группы Ли; левоинвариантные лоренцевы метрики; операторы кривизны; спектр

Полный текст:

PDF

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM

Ссылки

  • На текущий момент ссылки отсутствуют.