The Generalized Dependence of Soil Cover Emissivity on Temperature and Soil Moisture in the Upper Ob River Basin

  • П.Н. Уланов Алтайский государственный университет (Барнаул, Россия)
  • А.Н. Романов Институт водных и экологических проблем СО РАН (Барнаул, Россия)
  • Д.Н. Трошкин Институт водных и экологических проблем СО РАН (Барнаул, Россия)
  • И.В. Хвостов Институт водных и экологических проблем СО РАН (Барнаул, Россия)
Keywords: refractive index and absorption index, complex dielectric constant, emissivity

Abstract

The results of measurements of the dielectric and radio emission characteristics of soils sampled in the floodplains of the Ob, Alei, Anuy, Katun, and Charysh rivers in the Altai Territory are presented. Soil samples were obtained on test areas flooded during spring floods, as well as on test sites distanced from rivers and not falling into the zones of possible flooding. Laboratory measurements of dielectric and radio-emitting characteristics of soils were conducted with a bridge type installation using a phase difference meter FK2-18 at the frequency of 1.413 GHz. For samples collected in river floodplains, generalized dependencies of refractions and absorptions on volumetric moisture and temperature are developed. The measured dependencies of the dielectric characteristics on the temperature in the range from 262 to 290 K and on the volumetric moisture in the range from 0 to 0.55 cm3 / cm3 are used to calculate soil cover emissivity. Based on the established regularities, a generalized dependence of the soil moisture on the emissivity of soil cover is calculated. The obtained result is an important step in solving the problems of restoring the spatial-temporal distribution of soil moisture from the data of the L-band satellite microwave remote sensing.

DOI 10.14258/izvasu(2018)1-09

Downloads

Download data is not yet available.

Author Biographies

П.Н. Уланов, Алтайский государственный университет (Барнаул, Россия)
ассистент кафедры вычислительной техники и электроники Алтайского государственного университета
А.Н. Романов, Институт водных и экологических проблем СО РАН (Барнаул, Россия)
заведующий лабораторией физики атмосферно-гидросферных процессов Института водных и экологических проблем СО РАН
Д.Н. Трошкин, Институт водных и экологических проблем СО РАН (Барнаул, Россия)
ученый секретарь учёного совета Института водных и экологических проблем СО РАН
И.В. Хвостов, Институт водных и экологических проблем СО РАН (Барнаул, Россия)
старший научный сотрудник лаборатории физики атмосферно-гидросферных процессов Института водных и экологических проблем СО РАН

References

He S., Gao Y., Li F., Wang H., He Y. Impact of Arctic Oscillation on the East Asian climate: A review // Earth-Science Reviews. — 2017. — V. 164. DOI:10.1016/j. earscirev.2016.10.014.

Bring A., Destouni G. Hydro-climatic changes and their monitoring in the Arctic: Observation-model comparisons and prioritization options for monitoring development // Journal of Hydrology. — 2013. — V. 492. DOI:10.1016/j. jhydrol.2013.04.003

Harris C. et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses // Earth-Science Reviews. — 2009. — V. 92, № 3–4.

Bergamaschi P., Houweling S., Segers A., et al. Atmospheric CH4 in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements // J. Geophys. Res. Atmos. — 2013. — V. 118.

Koven C.D., Riley W.J., Stern A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models // J. Clim. — 2013. — V. 26.

Konya K., Kadota T., Yabuki H., Ohata T. Fifty years of meteo-glaciological change in Toll Glacier, Bennett Island, De Long Islands, Siberian Arctic // Polar Science. — 2014. — V. 8, №. 2. DOI:10.1016/j.polar.2013.10.002.

Su Z., Roebeling R.A., Schulz J. Observation of Hydrological Processes Using Remote Sensing // Treatise on Water Science. — 2011. — V. 2.

Schaepman M.E. Spectrodirectional remote sensing: From pixels to processes // International Journal of Applied Earth Observation and Geoinformation. — 2007. — V. 9, № 2.

Комаров С.А., Миронов В.Л., Романов А.Н. Аэрокосмическое зондирование гидрологического состояния почв радиофизическими методами. — Барнаул, 1997.

Шарков Е.А. Радиотепловое дистанционное зондирование Земли: физические основы. — М., 2014. — Т. 1.
Published
2018-03-06
How to Cite
Уланов, П., Романов, А., Трошкин, Д., & Хвостов, И. (2018). The Generalized Dependence of Soil Cover Emissivity on Temperature and Soil Moisture in the Upper Ob River Basin. Izvestiya of Altai State University, (1(99), 53-57. https://doi.org/https://doi.org/10.14258/izvasu(2018)1-09