Secondary Regimes of Magnetohydrodynamic Flow in a Bent Channel

  • А.В. Проскурин Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия)
  • А.М. Сагалаков Алтайский государственный университет (Барнаул, Россия)
Keywords: magnetohydrodynamics, bend pipe, spectral/hp element method

Abstract

The study of electrically conductive fluid flow in a magnetic field becomes relevant when plans for construction of research and industrial thermonuclear reactors are implemented. Such facilities contain a large number of complex shape  pipes, in which liquid metals move in the presence of magnetic fields. Real life experiments are costly, so a large role in research and design is given to numerical modeling. The authors consider the flow of a viscous electrically conductive liquid within a 90 degree bent pipe. The liquid flows through the pipe under the action of a pressure gradient, the magnetic field is directed parallel to the inlet branch of the channel. The MHD solver based on the Nektar++ spectral/hp library is used for flow simulation. The spectral/hp method includes high accuracy of spectral methods and spatial flexibility of finite-element methods. At the present time, spectral-element methods are actively developed. In the paper, secondary  stationary modes of magnetohydrodynamic flow are revealed to be different from the case without the magnetic field: a vortex or counterflow of liquid is formed in the inlet branch of a channel, while the flow separation in the outlet branch is suppressed by the magnetic field.

DOI 10.14258/izvasu(2018)1-07

Downloads

Download data is not yet available.

Author Biographies

А.В. Проскурин, Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия)
доцент кафедры прикладной математики Алтайского государственного технического университетаим. И.И. Ползунова
А.М. Сагалаков, Алтайский государственный университет (Барнаул, Россия)
профессор кафедры общей и экспериментальной физики Алтайского государственного университета

References

Proskurin A.V., Sagalakov A.M. A new branch of instability of the magnetohydrodynamic Poiseuille flow in a longitudinal magnetic field //Technical Physics Letters. — 2008. — Т. 34, №. 3.

Pellegrini M., Endo H., Ninokata H. Numerical investigation of bent pipe flows at transitional Reynolds number // In Progress in Nuclear Energy. — 2011, Volume 53, Issue 7. D01:10.1016/j.pnucene.2011.02.005.

Spedding P., Benard E., McNally G. Fluid flow through 90 degree bends // AsiaPacific Journal of Chemical Engineering. — 2004. — Т. 12, № 1-2. D0I:10.1002/apj.5500120109.

Davidson P.A. An Introduction to Magnetohydrodynamics. — Cambridge: 2001.

Landau L., Lifshitz E. Electrodynamics of Continuous Media (Second Edition Revised and Enlarged), volume 8 of Course of Theoretical Physics. — Amsterdam: 1984.

Krasnov D., Zikanov O., Boeck T. Comparative study of finite difference approaches in simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. // Computers & fluids. 2011, 50(1). D0I:10.1016/j.compfluid.2011.06.015.

Patera A.T. A spectral element method for fluid dynamics: laminar flow in a channel expansion //Journal of computational Physics. — 1984. — Т. 54, № 3.

Cantwell C.D., Moxey D. et al Nektar plus plus : An open-source spectral/hp element // Computer Physics Communications. — 2015, 192. D0I:10.1016/j.cpc.2015.02.008

Karniadakis G., Sherwin S. Spectral/hp Element Methods for omputational Fluid Dynamics: Second Edition. — 0xford: 2005.

Proskurin A.V., Sagalakov A.M. A spectral/hp element solver for magneto-hydrodynamics // arXiv preprint arXiv:1707.08957. — 2017.

Karniadakis G., Israeli M., Orszag S. High-order splitting methods for the incompressible Navier-Stokes equations //Journal of computational physics — 1991. — 97,2. D0I:10.1016/0021-9991(91)90007-8.
Published
2018-03-06
How to Cite
Проскурин, А., & Сагалаков, А. (2018). Secondary Regimes of Magnetohydrodynamic Flow in a Bent Channel. Izvestiya of Altai State University, (1(99), 44-47. https://doi.org/https://doi.org/10.14258/izvasu(2018)1-07