A Self-Similar Solution of Piston-Like Displacement of Fluids in a Poroelastic Medium

  • А.А. Папин Altai State University (Barnaul, Russia)
  • А.Н Сибин Altai State University (Barnaul, Russia)
Keywords: two-phase filtration, Darcy’s law, saturation, poroelastic, Lagrange variables

Abstract

In this paper, the one-dimensional mathematical model of joint motion of two immiscible fluids in a poroelastic medium is considered. This model is a generalization of the Muskat-Leverett classical model in which porosity is considered to be a given function of spatial coordinates. The consideration of porous medium compressibility is the basic moment. The proposed model is based on the mass conservation equation for liquids and a porous skeleton, Darcy’s law for liquids with consideration of a porous skeleton motion, the Laplace formula for capillary pressure, rheological equation for porosity and equilibrium condition “of the system as a whole”. Paragraph 1 provides the formulation of the onedimensional model and the conversion of system of equations written in Euler variables. The transition to Lagrange variables leads to a closed system of equations that does not contain solid phase velocity. Paragraph 2 deals with the problem of piston-like displacement of fluids in poroelastic soil. A self-similar analogue of the Verigin’s problem is considered. In case of a porosity dependant special type filtration coefficient, the self-similar solution of the problem of piston-like displacement of fluids in quadrature for an elastic medium is obtained.

DOI 10.14258/izvasu(2016)1-27

Downloads

Download data is not yet available.

Author Biographies

А.А. Папин, Altai State University (Barnaul, Russia)
доктор физико-математических наук, заведующий кафедрой дифференциальных уравнений
А.Н Сибин, Altai State University (Barnaul, Russia)
аспирант факультета математики и информационных технологий

References

1. Нигматулин Р.И. Динамика многофазных сред. — Ч. 1, 2. — М., 1987.

2. Rajagopal K.L., Tao L. Mechanics of Mixtures. — L., 1995.

3. Папин А.А., Подладчиков Ю.Ю. Изотермическое движение двух несмешивающихся жидкостей в пороупругой среде // Известия Алтайского гос. ун-та. — 2015. — № 1/2.

4. Connolly J.A.D., Podladchikov Y.Y. Compaction-Driven Fluid Flow in Viscoelastic Rock // Geodin. Acta. — 1998. — V. 11.

5. Tantserev E., Cristophe Y. Galerne, Podladchikov Y. Multiphase Flow in Multi-Component Porous Visco-Elastic Media // The Fourth Biot Conference on Poromechanics. — 2009.

6. Коллинз Р. Течение жидкостей через пористые материалы. — М., 1964.

7. Muskat M. The Flow of Homogeneous Fluids Through Porous Media. — 1937.

8. Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. — Новосибирск, 1983.

9. Fowler A. Mathematical Geoscience. Springer-Verlag. — London, 2011.

10. Vardoulakis I. Sand-Production and Sand Internal Erosion: Continuum Modeling // Alert School: Geomechanical and Structural Issues in Energy Production. — 2006.

11. Папин А.А., Ахмерова И.Г., Токарева М.А. Математические модели механики неоднородных сред. — Ч. 1. — Барнаул, 2012.

12. Simpson G., Spiegelman M., Weinstein M.I. Degenerate Dispersive Equations Arising in the Study of Magma Dynamics // Nonlinearity. — 2007. — V. 20.

13. Tokareva M.A. Localization of Solutions of the Equations of Filtration in Poroelastic Medium // Journal of Siberian Federal University. — 2015. — V. 8 (4).

14. Abourabia A.M., Hassan R.M., Morad A.M. Analytical Solutions of the Magma Equations for Molten Rocks in a Granular Matrix // Chaos, Solutions and Fractals. — 2009. — V. 42.

15. Кузиков С.С., Папин А.А., Сибин А.Н. Численное исследование профильной задачи внутренней эрозии в межмерзлотном водоносном слое // Известия Алтайского гос. ун-та. — 2014. — № 1/2 (85).

16. Golay F., Bonelli S. Numerical Modeling of Suffusion as an Interfacial Erosion Process // European Journal of Environmental and Civil Engineering. — 2010.

17. Wang J., Walters D.A., Settari A., Wan R.G. Simulation of Cold Heavy Oil Production Using an Integrated Modular Approach with Emphasis on Foamy Oil Flow and Sand Production Effects // 1st Heavy Oil Conference. — 2006.

18. Папин А.А., Вайгант В.А., Сибин А.Н. Математическая модель изотермической внутренней эрозии // Известия Алтайского гос. ун-та. — 2015. — № 1/1 (85).

19. Папин А.А., Сибин А.Н. Проблемы математического моделирования внутренней суффозии грунта // Препринт № 1/15. — Барнаул, 2015.

20. Веригин Н.Н. О фильтрации растворов и эмульсий в пористой среде // 2-й Всесоюзный съезд по теор. и прикл. мех. : аннот. докл. — М., 1964
How to Cite
Папин, А., & Сибин, А. (1). A Self-Similar Solution of Piston-Like Displacement of Fluids in a Poroelastic Medium. Izvestiya of Altai State University, (1(89). https://doi.org/https://doi.org/10.14258/izvasu(2016)1-27

Most read articles by the same author(s)