Irreversible Deformations of a Rotating Cylinder

  • С.В. Фирсов Институт машиноведения и металлургии ДВО РАН (г. Комсомольск-на-Амуре, Россия)
Keywords: small deformation, rotating cylinder, viscoelastoplastic deforming, Norton power low

Abstract

The problem of acceleration of a cylindrical medium with consideration of irreversible deformation of creep and plasticity is investigated. For comparison, the problem of a rotating cylinder without creep deformation is considered. The problem of elastic deformation is solved analytically for the case of viscoplastic deformation and numerically -for the case of creep deformation. The Norton power low with continuous Mises type potential is used for modeling a process of creep deformation. The viscoplasticity model with Mises type stress potential is used for plastic deformation. When plastic flow occurs, it is assumed that the processes of accumulation of irreversible deformations of plasticity and creep take place together. The conclusions are made about the influence of creep deformation on the final distribution of stress. The significant decrease of stress intensity is observed for cylindrical mediums with rigid inclusion. However, the decrease is less significant for the hollow cylindrical medium. Also, the redistribution of stress intensity without decreasing is observed for the cylindrical medium with two free boundaries.

DOI 10.14258/izvasu(2018)4-21

Downloads

Download data is not yet available.

References

Nadai A. Theory of Flow and Fracture of Solids, Volume One. 2nd Edition. — McGraw Hill, 1950.

Gamer U., Mack W., Varga I. Rotating elastic-plastic solid shaft with fixed ends // International Journal of Engineering Science. — 1997. — Vol. 35. — № 3. DOI: 10.1016/S0020-7225(96)00085-7

Hodge P.G., Balaban M. Elastic-plastic analysis of a rotating cylinder // International Journal of Mechanical Sciences. — 1962. — Vol. 4. — № 6. DOI: 10.1016/S0020-7403(62)80008-3

Работнов Ю.Н. Ползучесть элементов конструкций. — М., 1966.

Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of an internally pressurised orthotropic rotating cylinder // Nuclear Engineering and Design. — 1984. — Vol. 83. — № 3. DOI:10.1016/0029-5493(84)90130-4

Bhatnagar N.S., Arya V.K., Debnath K.K. Creep Analysis of Orthotropic Rotating Cylinder // J. Pressure Vessel Technol. — 1980. — Vol. 102. — № 4. DOI: 10.1115/1.3263347

Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of orthotropic rotating cylinders considering finite strains // International Journal of Non-Linear Mechanics. — 1986. — Vol. 21. — № 1. DOI: 10.1016/0020-7462(86)90013-2

Bose T., Rattan M. Effect of thermal gradation on steady state creep of functionally graded rotating disc // European Journal of Mechanics - A/Solids. — 2018. — Vol. 67. — № Supplement. DOI: 10.5281/zenodo.1131585

Mangal S.K., Kapoor N., Singh T. Steady-State Creep Analysis of Functionally Graded Rotating Cylinder // Strain. — 2013. — Vol. 49. — № 6. DOI: 10.1111/str.12052

Бажин А.А., Буренин А.А., Мурашкин Е.В. К моделированию процесса накопления больших необратимых деформаций в условиях пластического течения и ползучести // Прикладная математика и механика. — 2016. — Т. 80. — № 2.

Бегун А.С., Буренин А.А., Ковтанюк Л.В., Панченко Г.Л. Развитие и торможение вязкопластического течения с учетом ползучести материалов упругих зон // Вестник ДВО РАН. — 2016. — № 4.
Published
2018-09-14
How to Cite
Фирсов, С. (2018). Irreversible Deformations of a Rotating Cylinder. Izvestiya of Altai State University, (4(102), 114-117. https://doi.org/https://doi.org/10.14258/izvasu(2018)4-21
Section
Математика и механика