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This article discusses a mathematical model of tumor
dynamics. The tissue is considered as a multiphase three-
component medium consisting of extracellular matrix,
tumor cells, and extracellular fluid. The extracellular matrix
is generally deformable. In the case of the predominant
extracellular fluid — tumor cell interaction, the original
system of equations is reduced to the one parabolic
equation degenerating on the solution with a special
right-hand side. The property of a finite perturbation
propagation velocity for tumor cell saturation is
revealed. The introduction describes the essence
of the problem. The second part presents the derivation
of a mathematical model of tumor dynamics as a three-
phase medium. The third part describes a mathematical
model for the case when mechanical interaction
with extracellular fluid is neglected. The fourth part
considers the case of predominant fluid-cell interaction.
The fifth part provides a proof of the theorem
on the localization of the solution to the equation
for the saturation of tumor cell.
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B manHON cTaThbe pacCMaTpUBAETCA MaTeMaTU4YecKas
MOJieNIb IUHAMUKY OIyXonu. TkaHb paccMaTpuBaeTCs
Kak MHoro¢asHas cpefa, COCTOsIasl U3 TPeX KOMIIO-
HEHTOB: BHEK/IETOYHOTO MaTPMUKCa, OIyXO/NEBBIX Kile-
TOK, BHEKJIETOYHOI KUIKOCTU. BHEK/I€TOYHDII MaTPUKC,
Kak IpaBuIo, gepopmupyercs. B crydae mpeobmaganms
B3aMMOJIEMICTBYA BHEK/IETOYHASA XKUJKOCTh — OIyXOJIe-
Bas KJIeTKa MICXO[HAaA CUCTeMa YPaBHEHUI CBOAUTCA
K OJHOMY IIapabo/i14ecKOMY BBIPOXKIAIOIIeMYycs Ha pe-
HIEHUM YPABHEHUIO C IIPAaBOJ YaCThIO CHELMATbHOIO
BUJIa. YCTAHOBJIEHO CBOVICTBO KOHEYHOI CKOPOCTH pac-
IIPOCTPaHEHN s BO3MYILIEHNUI /I HACBIIIEHHOCTY OIy-
XOJIEBBIX K/I€TOK. Bo BBemeHUn onncaxa mpobmreMaTnka
3aflayy. B epBOM IIyHKTe NpUBENEH BHIBOJL MaTEMAaTH -
4YeCKOIl MOfie/IN AMHAMUKM OIYXO/IN Kak TpexdasHoil
cpenbl. Bo BTOpOM IyHKTe OIMcaHa MaTeMaTh4YecKas
MOJIe/Ib B CTy4ae IpeHeOpesKeHN s MeXaHN4eCKIIM B3a-
MMOJIeJICTBMEM C BHEKJIIETOUHON XIUJKOCTbIO. B Tpe-
Tbell YaCTU PacCMOTPEH CIIy4ail npeobafaHus B3au-
MOZEICTBUA )XUIAKOCTb — KJIe€TKa. B 4eTBepTOIl YacTn
NPUBEEHO JOKa3aTeJIbCTBO TEOPEMBI O JIOKaIM3a-
UV peUleHNsA YyPaBHEHUA J/A HACBIIEHHOCTU KJIe-
TOK OIIyXOJIN.

Kniouesvie cmosa: puddepeniuanpuple ypaBHEHNU,
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Introduction

At the moment, there is no single approach
to describing tumor growth, both because tumors
have different origins and characteristics, and
because there are several parallel causes of tumor
development. We can say that the cells that form
the tumor, like other cells of the body, live in
an aqueous environment saturated with proteins.
These include all kinds of nutrients that cells need
to survive and reproduce, and chemical factors,
in particular growth promoters, growth inhibitors,
and chemotactic factors, which set off intracellular
chemical cascades of reactions that determine cell
behavior. The extracellular space is also filled
with a network of cross-linked proteins (elastin,
collagen, proteoglycans), collectively known as the
extracellular matrix (ECM), which forms the tissue
structure. Both in a physiological situation and in
a pathological one, the interactions of a cell with its
neighbors and with the extracellular matrix are very
complex.

1. Basic three-phase model. Formulation of
the problem

A mathematical model of tumor dynamics is
considered [1] — [5]. A tumor is composed of at least
three major components occupying an appropriate
percentage of space: tumor cells, extracellular matrix
(ECM), and extracellular fluid. In addition, the
components and chemical factors that diffuse into
the fluid and are taken up or produced by the cells
should be taken into account. However, they will
not be considered in the work. When describing the
process, mass balance equations are used for each of
the phases

W) v (- o)o) =T, M
% + V- (¢svr) =Tp, (2)
w + V- (¢(1—s)v) =Ty, (3)

where (1— ¢) is the volume ratios occupied by ECM,
¢ is the porosity, s is the saturation of the cellular
phase, (1 — s) is the saturation of the extracellular
fluid, vg, v, v; are true velocities of the extracellular
matrix, cells and extracellular fluid, respectively,
I'o,I'r,I'; are intensity of mass transfer from one
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component to others (I'og+I'r+I; = 0). It is assumed
that the phase densities are the same: pg = pr =
pi1 = p. The momentum balance equations for each
component are written as follows

5‘1}0

p(17¢)(ﬁ+UO~V7}O):V-To+bo+m8, (4)
0
pos(L +vr-Vor) = V-Tr +br +mf,  (5)
0
p¢(1—s)(%+vl-sz)ZV'ﬂ+bl+mf7 (6)

where T; is the stress tensor, b; are external
forces, and m{ is the interaction force acting
on the ¢ component due to its interaction
with other components. It is assumed that
the main contribution to the interaction forces
is proportional to the difference in velocities
between the components. In accordance with
thermodynamics, the saturation assumption implies
the existence of the Lagrange multiplier P, which is
then identified with the pressure of the extracellular
fluid in the constitutive equations, so that one can
write

m§ = PV(1 — ¢) — Mro(vg — vr) — Myo(vg — vy)

Ty Ty —T'p Iy
- ?UO TUT TUh
m7 = PV¢s — Myr(vr — v;) — Mpo(vr — vg)
Iy Iy - T Iy —Ty
T U + 6 U 6 Vo
mj = PV¢(1l —s) — Myp (v —vr) — Mo (v — vo)
r, TI,-Ty I, —T,
U + 6 6 Vo,

(7)

where M;; is the interaction between the i-th and j-
th components and 7} = —(P¢(1 - s))I—A&—Tl, Tr =
—(Pops)I + T, Ty = —(P(1 — ¢))I + Ty, where T;
is named excess stresses. It is assumed that the
main contribution to the interaction forces is made
by terms proportional to the difference in velocities
between the components. The terms in (7) that are
proportional to the mass production rates of I'; are,
however, negligible [6]. When describing biological
phenomena, inertia can be neglected, and the force
of interaction between the extracellular matrix and
fluid is negligible in relation to the force of interaction
between the cell and the fluid, and, above all, the



HN3BecTnsa Aatl'y. MaremaTtHka U MexaHuka. 2024. N° 1 (135)

cell and the ECM. However, this last assumption 18
not essential and can be discarded. Also, to a first
approximation, we consider the ECM to be rigid.
In accordance with these assumptions, the equations
(1)-(6) can be rewritten as

o(1-¢) _
ot - F07

% + V(¢SUT) = FT,
20022 4 V(p(1 - s)uy) =T,

0=—¢sVP+V -Tp +bp + Myp(vp — v;) — My, vy,

0= —(]5(1 — S)VP + V- Tl - MlT(UT — ’Ul),

(8)
since the ECM rigidity assumption implies that the
stress tensor Ty simply responds to forces applied
to the ECM. The bulk force by reflects, for example,
the influence of chemotactic or haptotactic factors on
tumor cells, and it is also assumed that b; disappears.
If we assume that Tl = 0, then the last equation
can be written as Darcy’s law v; — vp = —KVP,
where K is the permeability and is a function of the
volume fraction of the liquid phase. By adding the
two equations of momentum, it is possible to exclude
from the system the forces of interaction between the
liquid and the cells

—¢VP +V - Tr —Kytor 4+ by =0,

where K, = M:F()l is the permeability of the sticky
granular flow in the porous structure formed by the
extracellular matrix network. In the general case, it
can depend on the porosity and saturation of tissue
cells. The model equations will take the form

a(1—
(8t¢) =T,
3(;;5 + V(¢svr) = I'r,
V(gsvr + ¢(1 — s)uy) =0, )

’Ul—UT:—KVP,
UT:KQ —¢VP+V'TT+ij|7

where the third equation in (9) was obtained by
summing the mass balance equations.

2. Neglecting of mechanical interaction
with extracellular fluid
Consider the case when the permeability tensor
is isotropic. Since Mpq > M;r, Ko < K. Then,
substituting the pressure gradient from Darcy’s law
into (8), we get that

vr :Ro(VTT+bT) (10)

Assuming that b is proportional to the chemical
concentration gradient by = xVe, and neglecting
the stress tensor, the (10) equation implies the usual
chemotactic closure vy = wVe, where w = If{vox.
In particular, there are classical chemotactic models
of the form

dos

— + V- (wgsVe) =T'r.

9 (11)
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Chemotaxis can then be viewed as a torce balanced
by the resistance force created by the nutrient
medium, rather than as a convenient closure of
the mass balance equation. The (11) equation with
a given or varying concentration in accordance
with the classical reaction—diffusion equation can
be characterized by a solution that experiences
a discontinuity. On the other hand, [7] shows that if
the mechanics are properly taken into account, that
is, if (10) is used with a suitable stress constitutive
equation, the discontinuity of the solution is
prevented. In case of more chemotactic/haptotactic
effects, the model can be used

o=9) _
ot FU’N
%2 +V - |Koos(V - Tr + 5, i )| =T,

which must be supplemented with appropriate
reaction—diffusion equations for the chemical factors
c;- The first equation describes the possible
deposition or degradation of the extracellular matrix.
Suppose that the stress tensor is isotropic Tr =
—¥(s)L, X(s) = s—s°, by = 0 (no chemotactic effect),
where s® = s|;— is a given function [2]. Substituting
v into the second equation from (9), we get a system
of equations for finding ¢ and s

o(1—¢
(Bt L = Lo,
%2~V - (Ko(6)a(s)Vs) =T,

where K, = Ko(o)a(s),

1, s> 1,
a(s) =<¢s% 0<s<l,a>1.
0, s<0.

Systems of equations similar in structure have been
studied in the works [8]- [10].

3. Predominance of liquid-cell interaction
If there are no interactions cell - ECM , ECM -
liquid, then I'y = 0. Let’s put I'r = ~0(s)R(9) [2],

where v const > 0,
0, s> 1,
is)=<s(l—s), 0<s<1,
0, s <0,
0, ¢ =1,
0, ¢ <0.

Then the system takes the form:

2 —

ot ’
{agis -V (Ko((b)a(s)Vs) =Tr.
From the first equation we have that ¢ = ¢°(x), and
the second takes the form

¢0(z)% _v. (Ko(qbo(:r))a(s)Vs) — Ty
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4. Finite
velocity
In the one-dimensional case, the equation for s
can be written as

perturbation propagation

Os

) = 55 (@RS T2 ) 477 (12

where it is assumed that there exists a constant
M > 0 such that the following estimates hold 0 <
s < M < oco. The main result of this paper can be
formulated as follows: let s(z,t¢) be a weak solution
of (7) in K,y (zo) x (0,00), K, (z0) = {(x,z0) :
|x — 20| < po} such that so(x) = s(z,0) = 0
in K, (zo). Then there exist T > 0 and p(t) €
(0,po) such that s(z,t) = 0 for all ¢ < T and
z € K,(x¢). Under additional assumptions on the
nature of the vanishing of so(xz) we prove that
s(x,t) = 01in K, (z0). The question of the existence
of a corresponding solution is not touched upon here.
The proof uses the local energy method developed
in [11], [12]. Consider a number of function spaces
on  and Qr, following the notation adopted in [13].
Let ||-]]4,o be the norm in the Lebesgue space L, (2),
q € [1,00]. For brevity, we put || - llg.025

[ -1 = |- |l2.- We also use the space ¢ . the
set of infinitely differentiable functions with compact
support in €, and the Sobolev space Wlﬂ(Q), where
I = natural, p € [1,00] with the norm [[f|ly1 ) =

!
ZO ||D;nf||p79'
m=
Definition. A non-negative bounded measurable

function s(z,t) (0 < s(z,t) < M) defined in Q x
(0,00) is a weak solution of the equation (12) with
initial condition so(z) if VI' > 0 and any open subset
Q1 C R! the following assumptions hold

g = 1I-

5 € Loo (0, T, W3 (Q)), % <sa+1> € L[(0,T) x 4]

(13)
}gr(l) sdx:/sodm (14)
Q Q
and V®(z,t) €5”((0,T) x Q)
//{ VKo(4°) ?g—@—m }dmdt:
= —dmdt—i— #°(z)s(z,0) ®(z,0) dz.
[ [t
(15)

We introduce the notation

A(p,t) = / s2(z, t)de,

Kp(xO)

B(p,1)

If
—
V)
°
7 N
Sy
N———
(]
2y
&

Kp(xU)

and without loss ot generality we assume xg = U.

Lemma. Suppose that (13), (14) are fulfilled.

Then s(p, t) satisfies the estimates

- 1-0 1
T S CAT OB
+p AT (p,t))?, i=1,2,
where
« 2 1

L 4
IfZ—l,thena—_FQ<r<2,()<a<2,

(ro— 2)(1 0) ro—2
max (o, M "+

C, =CM ),

and if 4 = 2, then @ = 2,

1 1
T = =
o+2

, Oy =2C,

C is a positive constant independent of the radius p.
Proof follows [14], [15].
Theorem. Assume that the conditions (13) —
(15) are fulfilled and additionally ¢ € [0,T],T < T*,
where

1
T* gmm<2mm(¢°(fv)), <(p$+25—
_1
1—6
w1_29(po,t)> )71‘ =1,2.

If s(z,t) is weak solution to (7) and so(z) = 0 in
K, (z9), 0 < po < dist(zg,0G), then s(z,t) = 0
almost everywhere in K, «(2o) for 0 <t <T <T™.
Moreover

20 — 1

_ 1+26)
(20 + 1)4K2

mwzQ&%—L#ﬂm@mW*y ,

where if 0 < a < 2, then L =4C?-Q(r), 7€ (1,2),
and if o = 2, then L = 4C% - Q(r), r:aigzl

In both cases

T

w(p07t) = sup /B(pOaS)d&

0<r<t
0

26+1<1

Qr) =

e 260
551 | grb + TEMAE g 1) ’

K; = C[ po’ + T2 pozr P M08 =12,
and constants C'; and Cy are determined in Lemma.

Proof of the theorem.Equation (12) after
standard transformations, similar to work [14], is
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transtormed to the torm:

/p ¢ (x)s*dx+

+/t/p[a ) Ko ‘750(90))( ) — 8Dy | dzdr =
0 0

t

_ / sa(s)Ko(6° () %(p, ) ds) dr.
' (7)
Let’s put
a(p,t) = OiggtA(p, 7).

It follows from (17) that

min(¢°(x))a(p. ) + min(Ky  (6°(x))w(p,) <

< I+ v,
(18)
where v = ymax, (¢°(z)(1—¢°(z))), and follows [14],
we obtain

dr <

Js
%(p7 T)

t
1= [ sty
0

ow

5/)) ’

t p
12://52(1—s)da:d7'§t(a+w).
00

Therefore, (18) takes the form
min(¢°(x))(a(p, t) +w(p,t)) < L + vl <
i ow\ 2
O K alpt) o) (50)

i=1,2.

< Kt 0= a(p, ) + w(p, )] (

+vt(a 4+ w),

1 (135)
Now we choose ¢ in such a way that ¢ <
5>min(¢”(x)). Therefore,
2560, 2(1—0) w1—gOw

where K} = 4(K;)?,i = 1,2. Integrating (19) by p
from p; to pp, we find that (1 < r < 2)

2660 + 1
pl+200 _ 14250 T:K;‘tl’gw%’l(po,t) >
200+1 .1 _
> 26_1Kit1 0w20 1(p1,t).

Choosing ¢ in such a way that the equality

200 +1
20 — 1

14266 —

14250
P1 -

* t1—9 w29—1

7

(po, 1),

holds, we obtain that w(p,t) = 0 for all p < py, i.e.
s(x,t) = 0 almost everywhere in K,(0) for p < py
and

0<t sz’n(;ymin(qso(x)), ((p(l)+259_

20 — 1
(260 + 1)K}

1

w129(p0,t)> 19).

1+260)

The theorem is proved.

Conclusion

This article describes a mathematical model of
tumor dynamics takes into account phase transitions
and based on the theory of fluid filtration in
porous media. After some natural assumptions
characteristic of the process under consideration, the
system of equations under consideration is reduced to
a first-order equation for the porosity function and
a parabolic equation for the saturation of the cell
phase with a special right-hand side. The property
of a finite speed of propagation of disturbances for
cell saturation has been established.
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