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Properties of triangles such that the squares of their
sides form an arithmetic progression were studied in 2018.
In this paper, triangles with sides that form an arithmetic
progression are described. Let a, b, c be sides of an arbitrary
triangle ABC. If sides b, a, ¢ of the triangle ABC form an
arithmetic progression then, for example, the equality
a=(b+c)/2 (b<a<c) holds. The class of triangles for which
a=(b+c)/2 is greater than the class of triangles for which
b, a, ¢ form an arithmetic progression. In this paper, we
study the properties of triangles for which this equality
holds. Thus, triangles with sides that form an arithmetic
progression are described with the help of the parameters
p; R, . Classes of rectangular triangles, triangles with angle
30°, triangles with angle 60°, triangles with angle 120° are
studied and described.
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1. Introduction. Let R and r be the
circumradius and the inradius of an arbitrary
triangle ABC. Also, let AB = ¢, AC = b, BC = a,

JA=a, 43:5,40:7,;;:%(”‘3.

In [1], the authors studied properties of triangles
such that the squares of its sides form an arithmetic
progression. Also, description of such triangles
associated with its remarkable points is given. It is
natural to describe triangles such that its sides form
an arithmetic progression. In this case, for examples,

b
the equality a = vre (b < a < ¢) holds. The class
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B 2018 r. oncaHbI CBOMICTBA TPEYTONBHUKOB, Y KOTO-
PBIX KBaJpaThl CTOPOH 006Pa3yroT apuQpMeTIIecKyIo Ipo-
rpeccuio. B jaHHOIT paboTe OMMCHIBAIOTCA TPEYTO/IbHUKI,
CTOPOHBI KOTOPBIX 00pa3yIoT apudMeTnaecKyo mporpec-
cnio. ITycTb a, b, ¢ — 3TO CTOPOHBI IPOU3BOIBHOTO TPEy-
ronbHKa ABC. Ecii ctoponbl b, a, ¢ Tpeyronmbanka ABC
06pasyroT apuQMeTIIeCKYI0 IIPOrPeCcCmIo, TO, HAIIPUMep,
CTlefyIoliiee paBeHCTBO BoInonHstercst: a=(b+c)/2 (b<a<c).
OpnHako K/1acc TpeyrolbHUKOB, [JI1 KOTOPBIX PaBEHCTBO
a=(b+c)/2 BbimonHsIeTCs1, OOTBIIIE, YeM K/IACC TPEYTOIbHI-
KOB, CTOPOHBI KOTOPBIX b, a, ¢ 06pasyioT apudmeTniecKyio
nporpeccuio. B Hacroseit paboTe MBI M3yd4aeM CBOIICTBA
TPEYTONbHMKA, /I CTOPOH KOTOPOTO BBIIIOTHAETCS 3TO
paBeHCTBO. V] 9T0 I03BOJIACT OmNcaTh (Ha A3bIKe ITapaMe-
TPOB P, R, I) TpeyrompHuK1, CTOPOHBI KOTOPBIX 06pasyioT
apudmeTdeckyo nporpeccuio. OTeIbHO ONMICBIBAIOTCS
KJIaCChI TPEYTOIbHIKOB: IIPSAMOYTO/IbHBIE TPeYTO/IbHUKI,
TPEYTOoNbHNUKY C yInoM 30°, TpeyToNbHUKM C yI7oM 60°,
TPEYTO/IbHUKY C yriom 120°.

Kntouesvie cnoea: TpeyrombHUK, pajiuyC OIMCAHHOIMN

OKPY>XHOCTH, PafinyC BIIMCAHHON OKPYXHOCTH, IIOTyIIe-

pumerp, apI/I(bMeTI/I‘{CCKaH mporpeccus.

c
is greater than the

of triangles for which a =

class of triangles for which b, a, ¢ form an arithmetic
progression. Really, the class of triangles for which

a

also contains all equilateral triangles.

Further, this class contains rectangular triangle with
sides 3,4,5. In [2, Ex. 352], [3, Ex. 286, 287, 321, [4,
Ex. 11.55, 12.23], [5, p. 89, Ex. 38|, and [6, Ex.
88], some properties and characterizations of such
triangles are given.

In this paper, study of this triangles is continued
and the following theorems are proved [7].
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Theorem 1. For arbitrary triangle ABC, the
following conditions are equivalent:
_b+c
=5
2. p?> = 18Rr — 9r?;
3. the sides of the triangle ABC are equal to

2 2p 2
?p —/2r(R —2r), gp, ?p ++/2r(R —2r).
Besides this, o < 60°.

Theorem 2. Let R,r be arbitrary positive
numbers such that R > 2r and p = V18Rr — 9r2.
Then there exists a wunique triangle ABC  such
that R,r,p are the circumradius, the inradius, the
semiperimeter of the triangle ABC' respectively.

Theorem 3. (1) Let AABC be a rectangular

b
triangle. The equality a = % holds in NABC

1. a

iff p = 6r,R = gr (i.e. in this case, NABC is

homothetic to a triangle with sides 3,4,5).
(2) Let AABC' be a triangle with angle 60°. The

b
equality a = % holds in NABC' iff NABC is a

equilateral triangle.
(3) Let NABC be a triangle with angle 120°. The

b
equality a = % holds in ANABC iff p = 5V/3r,
14
R= 37 (i.e. in this case, ANABC is homothetic to
a triangle with sides 6,10, 14 ).

2. Proof of the main results.

Proof of Theorem 1. Let AABC be an

b+c 2
arbitrary triangle such that a = % Then a = ?p

By [8], a, b, ¢ are roots of the equation

x® — 2pa® 4+ (p® +r? +4Rr)x — 4pRr =0. (1)

Therefore

2p\? 29\ 2
<§> —2p <3p> +(p2+7‘2+4Rr)~§p—4pRr=0

and p? = 18 Rr — 9r%. So (1) implies (2).
Now prove that (2) implies (1). Assume that p? =

2
18Rr—9r2. Then gp is a root of the equation (1) and

23— 2pa® 4 (p*> + 12 + 4Rr)x — 4pRr =

2 2
b="L_ V2r(R—2r),a= —p,

3
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2 b
are roots of (1) and the equality a = P —;C
holds in AABC. Note that we have proved also that
the condition (1) is equivalent to the condition (3).
We will show o« = ZBAC < 60°. We need to prove

the following lemma.
cosa=1— 1.

R
b
Proof. The equality a = re

Lemma.

is equivalent to
2 _

a?> = (b+ ¢ —a)? In its turn, the condition a
(b+ ¢ — a)? is equivalent to the equality

b% + ¢ —a?

1 —
2bc
2 2 32 2 2 2
_ 9 17a +c b l—a +b c
2ac 2ab
and hence
l—cosae ~ 1—cosf8 1—cosy
2 2 2

«
The last equality can be written as sin2§ =

4sin? 5 sin? 1, ie. sine = 2sin b sin 2. By 8],
2 2 2 2 2
sin % sin g sin % = é Thus
PR a . By T
sin

§ZQSiH§Sin5SiH§:ﬁ.

Hence cosa = 1 — 2sin? % =1- % and the lemma
is proved.
It is known that R > 2r (see [8-10]). Therefore

cosa = 1 —% > 3 and « < 60°. The proof is
complete.

Proof of Theorem 2. Assume that R,r are
arbitrary positive numbers such that R > 2r and
p = V18Rr — 9r2. By |8, Theorem 2, P. 54|, positive
numbers R,r,p are the circumradius, the inradius,
the semiperimeter of some triangle respectively iff
the condition

(p* —2R?* — 10Rr + 1) <4R(R —2r)* (2

holds. Note that p = +/18Rr —9r2 implies (2).

Really, we have
(p> —2R*—10Rr+1%)?> = 4(R—2r)* <4R(R—2r)>.

The proof is complete.
Proof of Theorem 3. Prove (1). Consider a
rectangular triangle AABC' in which v = 90°. By
1
[8, P. 26|, cosacos Bcosy = 4—]%2(192 — (2R +1)?).
Since v = LZACB = 90°, we have p = 2R + r. By

C . .
is equivalent to

b
Theorem 1, the equality a =

the condition p? = 18Rr —9r? = (2R+7)2, or 2R? —
TRr + 52 = (R — r)(2R — 5r) = 0. Since R > 2r
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b
(the Euler’s inequality), the equality a = —;—c is

5
equivalent to R = ?r for the rectangular triangle

2
AABC. Sop = 2R+71 = br,a = £ =

2R = 5r,b = 3r for such triangle. Thus AABC is
homothetic to a triangle with sides 3,4, 5.

Further prove (2). Let AABC be a triangle with
angle 60°. By [8], the numbers cos «, cos 3, cosy are
roots of the equation

dr,c =

4R?2® —AR(R+r)2* + (p* +r? — 4R*)2+

+(2R+7)?*—p*=0. (3)

1
Hence cos 60° = 3 is aroot of (3) and p = V3(R+7).

b
By Theorem 1, the equality a = te is equivalent

to the condition p? = 18 Rr — 9r2. Since p? = 3(R* +
2Rr +1r?), we have 3R? 4+ 6Rr + 312 = 18Rr — 9r2,
b+c

i.e. (R —2r)? = 0. Therefore the equality a =

is equivalent to R = 2r for any triangle with angle
60°. By [8, P. 8], the last inequality holds if and only
if AABC' is an equilateral triangle.

Finally, prove (3). Let AABC be a triangle with

1
angle 120°. Then cos 120° = ~5 is a root of (3) and

3R
p = i Thus, by Theorem 1, the equality a =
V3
b+c . . - 9
is equivalent to the condition p* = 18Rr —
9R? + 6Rr + r? 14
9r? = # or R= ?T‘ The last equality
implies
3R+r 2p 103
P 73 V3r,a 3 3 T,
2
b= ?f’ V2r(R - 2r) = 2V/3r,
2p 14
++2r(R—=2r) = —&=r
g PVHESI =0

and AABC is homothetic to a triangle with sides
6,10, 14.
The proof is complete.

Let ABC be a triangle with angle 30°. Then

cos 30° is a root of (3), i.e.

R? M—41%(1%+r) + (P> +r

+(2R+r)2—p =0,
R+7r(2+V3) =

v,

—4R?).
R?)- =5

b
If a = j, then, by theorem 1, p? = 18Rr — 9r?,

ie. 18Rr — 9r? = R?2 4+ 2(2+V3)Rr +r%(7 + 4/3),
or R? — 2Rr(7 — /3) + r2(16 + 4v/3) = 0. Hence

either R = (4 + 2v/3)r, or R = (10 — 4/3)r, and
p= R+r(2++/3). Consider these cases.
Case 1. Let R = (4+2V3)r.

In this case, by Theorem 1, the sides of the
triangle ABC' are equal to

= %(R+r(2+\73)) =

GZE

= %(6 +3V3)r = (4 +2V3)r,

2
b=§p— 2r(R—2r) =

= %(R+T(2+\/§)) —\/2r(2+2V3)r =

=<4+2\/§— \/§+1>r
25 2r(R — 2r) = <4+2\/§+2\/E)r

and AABC' is homothetic to a triangle with sides

<4+2\/§+2\/E>,4+2\/§,
<4+2\/§—2\/E>.

Case 2. Let R = (10 — 4/3)r.

In this case, the sides and the semiperimeter of
the triangle ABC' are equal to

- %(12 —3V3) = (8 —2V3)r,

p=R+7(2+V3)=(12-3V3)r,

2p
3

b= 2r(R —2r) = (10 — 4V/3)r,c =

Then AABC' is homothetic to a triangle with sides
8 — 2¢/3,10 — 4v/3, 6.

So the following theorem is true.

Theorem 4. Let ABC be a triangle with angle

b
30° and the equality a = % holds in AABC'. Then

either AABC' is homothetic to a triangle with sides
8 — 2¢/3,10 — 4v/3.6, or AABC is homothetic to a
triangle with sides

<4+2\/§+2\/ﬁ>,4+2\/§,

<4+2\/§— \/§+1>.
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Consider the class K(¢) of triangles with fixed each A; (i = 1,2), we can calculate R, = \;r,
b 2p;
angle ¢ (0 < ¢ < ) such that the equality a = vte = VI8R;r — 912 = r/18X\; — 9, a; = %7 b, =
holds for sides a, b, ¢ (in particular, if b,a,c form an ~ 2pi (B —2r), i 2pz 4 /2r(Ri — 2, < 2.

arithmetic progression). By [8, p. 26],

p*(1 —cos @) = 4R*cos® ¢ — 4R(R + ) cos? o+
+ (r? —4R*)cosp + (2R +1)* =
= R%(4cos® p — 4cos® o —4cosp + 4)+
+ Rr - 4(1 — cos® ) + 2(1 + cos @),

p? = R*-4sin? p+4(1+cos go)Rr—f—ctgzg r? = 18 Rr—9r2.
R
Let A = — > 2. Then ) is a root of
r
4sin® @ - 12 + (4cosp — 14)t + (ctg2§ +9)=0. (4)

The equation (4) has no more than two different
roots A1, Ao. Let r be a fixed positive number. For

So the class K () has no more than two different
subclasses of homothetic triangles. For example, we
have:

1. the class K(90°) consists of triangles that are
homothetic to a triangle with sides 3,4, 5;

2. the «class K(30°) consists of triangles
that are  homothetic to a  triangle
with sides either 8 — 2v/3, 6, 10 —
43, or (4+2\f+2\/\/§+1),4 +

2v3, (4+2v3 -2V VB +1);

3. the class K (60°) consists of equilateral triangles;

4. the class K (120°) consists of triangles that are

homothetic to a triangle with sides 3,5, 7.
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