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In this paper, anisotropic Sobolev — Slobodetskii
spaces in poly-cylindrical domains of any dimension N
are considered. In the first part of the paper we revisit
the well-known Lions — Magenes Trace Theorem (1961)
and, naturally, extend regularity results for the trace and
lift operators onto the anisotropic case. As a byproduct,
we build a generalization of the Kruzhkov — Korolev
Trace Theorem for the first-order Sobolev Spaces
(1985). In the second part of the paper we observe
the nonhomogeneous Dirichlet, Neumann, and Robin
problems for p-elliptic equations. The well-posedness
theory for these problems can be successfully constructed
using isotropic theory, and the corresponding results are
outlined in the paper. Clearly, in such a unilateral approach,
the anisotropic features are ignored and the results are far
beyond the critical regularity. In the paper, the refinement
of the trace theorem is done by the constructed extension.
Namely, we formulate proper weakly regular anisotropic
classes for boundary conditions, so that the boundary value
problems appear to be well-posed. Finally, the analogous
results are formulated for the p-parabolic problems.
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PaccMmarpmBaioTcs aHM30TPOIHBIE IPOCTPAHCTBA
CobomeBa — C060M€IKOT0 B OTPAHNYEHHBIX TOIUIIN-
JIMHAPUYECKIX 00/IACTAX MPOU3BO/IbHON pasMepHOCTH N.
B niepBoit yacTy cTaThy KOHCTPYMPYETCA €CTECTBEHHOE IIPO-
JO/DKEHME Pe3yNbTaToB TeopeMbl JInonca — MajpkeHeca
0 IPaHIYHBIX CTIefiaX yHKIVIL, IPUHAIEKAIIVX M30TPOII-
HBIM IIPOCTpaHCTBaM (1961), Ha cTy4ail aHU30TPOIHBIX
IpocTpaHCTB. Kak crelcTBIe, TakoKe YCTaHABIMBAETCS He-
KoTopoe 060061enne Teopemsr KpyskkoBa — Koponésa
0 TpaHMYHBIX CTefax QyHKimit (1985) mmst cobomeBcKux
IIPOCTPAHCTB IepBOTro NOpsAKa. Bo BTopoil yacTy cTaTby
PaccMaTpyBaIOTC OCHOBHBIE HEOTHOPOIHbIE KpaeBble 3ala-
Y1 /I BBIPOYKTAOIIVIXCA S/UIUIITUYECKIX YPaBHEHNI C aHM-
30TPOIIHBIM p-JIAI/IACMAHOM. Pe3ynbTaTbl 0 KOPPEKTHOCTH
3THX 3a/1a4, IIO/TyYaeMble C IIOMOIIbIO PE3Y/IBTATOB U TEXHM-
ku JImoHca — MajpKeHeca, pa3paGOTaHHO 15 I30TPOIHbIX
IIPOCTPAHCTB, KOPPEKTHBL, HO He YYMTBIBAIOT 0COOEHHOCTE,
CBA3aHHBIX C aHM30TpOIMeENL. B cBA3YM ¢ 3TUM IIPOBOAUTCA
YTOYHEHNeE: C IOMOLIBIO IIOCTPOEHHOT'O B IIePBOI YacTM CTa-
TBY IIPOJO/DKEHIA TeOPIH CIeT0B (HGOPMYIUPYIOTCS HafljIe-
Kalle c1abo pery/sIpHble AHM30TPOITHbIE KJIACCHI [ISL TPa-
HIYHBIX YCTIOBUIA, /I KOTOPBIX pacCMaTpyBaeMble 3afaun
OKa3bIBAIOTCSI KOPPEKTHO IIOCTAB/IEHHBIMIA.

KiioueBble crmoBa: aHM30TpoIHOe HpocTpaHcTBo Cobo-

7leBa [POOHOTrO TOpSfKA, p-TAIlIACHaH, TPAHUYHBIA CTIel

byHKuMM.

Introduction This article is devoted to a study of a class
of anisotropic Sobolev — Slobodetskii spaces W=#(0) and
their dual spaces W ~=#" (O). Here domain Qs a polycylinder
in[RY, ie., it meets the following requirements.
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Condition C. e O =8; x By X ... X By,

k
o BiCRY: (i=1,2,....,k), > N;=N,
i=1
e 3, are nonempty bounded open sets with

Lipschitz boundaries 955;.

Multi-indices s = (s1,82,...,5;) and p
(p1,p2,-..,pr) are such that s; € (0,1] and
pi € (1,400). Thus W*P(0O) are fractional Sobolev
spaces, in general. Multi-index p’ = (p},p5, ..., D))
is such that p;' + (pi)~' =1 (i 1,2,...,k),
thereby p. € (1,400). We focus on the question
about regularity properties of traces of functions
from W#*P(QO) on subsets of 9O. Our interest to this
question is motivated by applications to p-elliptic
equations (see Eq. (7) in Section 2.) supplemented
by either Dirichlet or Neumann nonhomogeneous
conditions. Such equations arise in modelling of
heat transfer, gas diffusion, etc [1-6]. Anisotropy
p; # p; means that diffusion rates differ in different
directions x; and x;.

The general theory of isotropic Sobolev —
Slobodetskii spaces was built in sixtieth of 20th
century [7-9]. Within its framework, regularity
properties of traces of functions ¢: RY +— R on (N —
1)-dimensional manifolds were investigated in detail
(see, for example, [7, Theorem 5.1], [10, Theorems
2.21 and 2.22]). Some applications of trace theorems
to the Dirichlet, Neumann, and Robin problems for
the isotropic p-Laplacian equation can be found in
[11, Chapter 2]. Embedding in anisotropic Sobolev
spaces of the first order were studied in [12], and the
following result was established [12, Inequality (12)]
(see also [1, Lemma 3.6 and Remark 3.6]):

Proposition 1. Let Q C RY be a bounded domain
with the smooth boundary T, u € L™(Q), Oyu €
Lri(Q),1<p;<oo,i=1,...,N.

Then
lull a(ry <
N 0
<C(Q) (Z |a$iu|LPi(Q) + ||“||L’"(sz)> ||U||i:€gz)v
k=1
where
N
N 1
7§q71<7ﬂ§qap*: )
p* Z:pi
RS
Nl-p*) r 7
_(1_N-1 / i1 .1
S\ Nq N Np* 1)’

Also, worth to notice the results on traces in
anisotropic spaces that were achieved in [13, 14].
The present article is organized as follows.

In Section 1, we formulate the trace theorem for
anisotropic Sobolev — Slobodetskii spaces (Theorem
1). Then we outline a brief scheme of its proof. This
theorem somewhat extends the result of Proposition
1, in particular.

In Section 2, we give some examples of application
of this theorem to the basic nonhomogeneous
boundary value problems.

1. The Trace Theorem in Anisotropic
Sobolev — Slobodetskii Spaces

1.1. Some useful notation. In Introduction
we have entered a polycylindrical domain O C RY
satisfying Condition C. Now let us introduce some
relevant convenient notation in order to study traces
of functions from W*P(O) on (N — 1)-dimensional
manifolds M C 00. For € O write

m:(mla;BQv"'amk) 607
where x;, € B; (i =1,...,k), and denote
a1 = ($27w37" . 7wk) € O/m\la

Oz, =By x By X ... x B, c RN"M_

Ej = (11317...,$j,1,$j+1,...7112k) S Oggj,

(955]. =By x ... XBj_l XB]‘_H X ...x B C
CRNNi (j=2,3,... k-1),

ak = (wlv"'vzzkaaxk‘*l) € Oik,

O@k =B1 X ... X Br_oa X Bi_1 C RN Nk,

For the sake of conciseness, for ¢: @ — R we write

¢(§1;C1) = ¢(C1,$2,$3,...,$k) (Cl 6Bl)a

o(x5:¢;) = (1, ..

'7wj—17Cj7mj+17"'7mk)
(Cj EBJ‘, j:2a33"'ak71)7
O(®1; Cp) = d(@1, . ®i1,Cy) (k€ Br),

when it is suitable.
Quite analogously, we also introduce further the
notation s; and p,.

Remark 1. In line with tkhe above introduced

notation, remark that 00 = U 0B; x Oz,.

i=1

Of course, in the right-hand side here we mean
that the order of Cartesian product is proper, that
is, by 0B; x Oz, we mean

BlX...Xgi_lXaBiXBH_lX...XBk.

The above introduced notation will be
systematically used throughout the rest of the
article.
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1.2. Notion of anisotropic Sobolev —
Slobodetskii spaces For p = (p1,p2,...,Dk)
introduce the anisotropic Lebesgue space LP(O)
equipped with the standard norm

[¢lz0©) = |-+ ¢l ooy || 10
where, as usually,
1/1’1:
19 )l sy = ( | @) pldcl)

for sufficiently regular W.
_ Further, for s; € (0,1) and sufficiently smooth ¢:
O — R introduce the seminorm

pi
<¢> bz Pq (o)

- //'““

For s; = 1 we canonically define
<¢>ij%(o) = [|Va, ¢l Lri (0)-

Now we are in a position to define anisotropic
Sobolev — Slobodetskii spaces W*P(0) in a rigorous
way.

:1:,, Bl "

Definition 1. The space of functions ¢: O — R
equipped with the Sobolev — Slobodetskii norm

k

+ Y (Dwsiei o)

i=1

is called the Sobolev — Slobodetskii space W*P(O).

1¢llws.po) = 9llLr(o)

In order to study properties of traces of ¢ €
W#P(O) on (N —1)-dimensional manifolds M C 00,
we also introduce the notion of W7 (M). To this
end, we naturally induce the norm of W*P(O) onto
any (N —1)-dimensional Lipschitz manifold M C 00
via its atlas, and set

[éllwrrmy = Il ey + Z PIW i (MaB)»
=1

where

ol r ) =

k
S| [ 1wl don |

=1\ mnoB;

<¢>vf};;”‘i (MNdB;) —

- / / / A@i;m;, ¢)do, doy, dz;,
Oz, MNOB; MNIB;
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|p(x3;¢;) — d(xi;m,) |

€ [N T

A(ila ;5 C’L) =

€ (0,1), r; € (1,400); and do,,, do¢,, and do,
are elements of M N oB,;.

Definition 2. The space of functions ¢: M — R
equipped with the norm (1) is called the Sobolev —
Slobodetskii space WY"(M), M C 90.

Remark 2. The important case is M = 00O.
Obviously, restriction of ¢ € W"(90) to M C 0O
(M Lipschitz) belongs to W™ (M). If MNIB; =0
then ~; and r; are dumb indices and therefore can be
taken arbitrarily.

Remark 3. If p; = ... = pp = p € (1,+00) and
s1=...=38 =s € (0,1] then W*P(O) := W*=P(O)
is the classical isotropic Soboles (s = 1) or Sobolev —
Slobodetskii (s € (0,1)) space. If s = ... =5, =1
and p; # p; for i # j, in general, then W'P(O)
is the anisotropic first-order Sobolev space, as in
Proposition 1.

We finish this subsection by introducing the
notion of the negative spaces.

Definition 3. For ; € (0,1) and r; € (1,400) (i =
1,...,k), for an arbitrarily fixed (/N —1)-dimensional
Lipschitz manifold M C O, the space W=7 (M)
is defined as the dual space of W™ (M). Hereby we
have 1/r; +1/r, =1, and the associated norm is

Ml = sup 1Ol
TR T cwrron [l
6 #0
Analogously, W~1"(0) = (WL (0))*.

By (-, -) s we denote the duality bracket between
WYT (M) and W=7 (M). Definition 3 generalizes
the notion of negative Sobolev — Slobodetskii spaces
from isotropic case [7, Section 4.3], [10, Section 2.2]
onto anisotropic case.

1.3. Notion of interior trace. Formulation
of the trace theorem in anisotropic spaces.

Definition 4. For ¢ € D(O) the mapping ™
defined by the formula

Y0 (®) = lim
T —x
xzeO
x € 00

o(x) forxedO (2)

is called the interior boundary trace operator.

Here D(O) is the space of C* functions with
compact support contained in 0.

The following theorem is the first main result of
the article.
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Theorem 1. (The Trace Theorem in Aniso-

tropic Spaces.) Let O C RY be a polycylinder

that meets the requirements of Condition C. Then

the following assertions hold true.

(i) For any p = (p1,p2,--..pk), Pi € (1,400), the
interior boundary trace operator ", defined by
(2) for ¢ € D(O), admits a continuous extension

W€ LIWEP(0), WTP(90)),  (3)
1 1 1 1 1
=\ s T s 7+7:17 4
K <p’1 Ph p;) pi P )
hereby there is a constant cp > 0 such that

6™ dllwpoo) < erlldllwrpo),
Vo e whe (o).

(Constant cr is independent of ¢.)

For any p = (plap27"'7pk) pi € (17+OO)7
the interior boundary trace operator v\ has a
continuous right inverse operator (called the lift

(if)

operator)

£ € LOWP(00), WHP(0)) (5)
satisfying v EY = for all v € WYP(JO) as
well as

€V lwrpo) < errlYllwrp0)
Vi € WTP(9O).

(Constant crr is independent of 1. Notation ~y
is the same as in (4).)

Remark 4. Let M C 00 be a (N — 1)-dimensional
Lipschitz manifold. On the strength of Remark 2, the
both assertions of Theorem 1 hold true with M on
the place of 90.

1.4. Brief scheme of proof of Theorem 1.
The idea of the proof is very simple. Firstly, we
directly apply the Lions — Magenes Trace Theorem
[7, Theorem 5.1] (in the isotropic case) to the space
of functions (z; — ¢(Ts;2:)) € WHPi(B;) for a.e.
T; € @@ and construct the trace operators

VP By OB,

’YéntyBi EL(Wl,pi<8i)7Wl/Pg;Pi(agi))

(i=1,2,...,k). These operators depend on Z; € O,
parametrically.

Secondly, we notice that, since O is polycylinder,
then variables @1, x5, ..., x) are separated, so that
the operator (" defined by the rule

’Yént (:C) _ ’yéntﬁid)(ai; ;1}1) for x € aBz
(z: 1,27-~-7k)

satisfies (3) and is the trace operator by construction.

Thirdly, thus constructed (" is surjective since
all 725 are surjective and the sets B; x Oz, do not
overlap each other. Hence the right inverse operator

£ is also defined and satisfies (5). O

2. On Boundary Value Problems for the
Anisotropic p-Laplacian Equations. In this
section we revisit the theory of weak generalized
solutions to the Dirichlet, Neumann, and Robin
problems for the isotropic p-Laplacian equation. This
theory was mainly built in [11, Chapter 2]. With the
help of Theorem 1, we somewhat extend it onto the
anisotropic case.

2.1. Formulations of the basic problems
for the anisotropic p-Laplacian equation. Let
O C RY be a polycylinder that meets Condition
C. Let P = (p17p27"'7pk’)3 pi € (]_,+OO) (Z -
1,2,...,k), p« = iinllinkp,». Let f = f(x) be given
such that

FEWTIPHO) (XM ()T =D, (6)

We consider the anisotropic p-Laplacian equation

k

= " divg,(|Va,u

i=1

Pa=2y — f in O
u=f in

(7)
supplemented with either the Dirichlet boundary
condition

pi*sziu) + |u

u=g on J0O, (8)
where g = g(@) is given, or the Neumann boundary
condition

k

i=1

Pim2Y,u)-v; =h on 00,  (9)

where h = h(x) is given, or the Robin boundary

condition

k
Z(|Vmiu|pi_2vmiu) Vi 4 |ulT2u=$ on 00,
i=1

(10)
1-1/p, _ 1

Wherepf*fﬁ S qj,ﬁ —ﬁ(m) and » =
const > 0 are given.

In (9), (10), and further, v, is the unit outward
normal to 9B;. (If x € 9O but « ¢ 9B; then in (9)
and (10) we simply take zero vector for v;(x).)

In the isotropic case, the following existence and
uniqueness results were established in [11, Chapter
2, Sections 1.6 and 2.3].

Proposition 2. Let (p. =)p; = r € (1,+00)
(i = 1,2,...,k). Let f satisfy (6). The following
assertions hold true

(i) Whenever g € WY (9O), the Dirichlet
problem (7), (8) has the unique weak generalized
solution u € Wb (0).

(ii) Whenever h € W=1/""7"(30), the Neumann
problem (7), (9) has the unique weak generalized
solution uw € WL (0).

(iii) Whenever $ € W=/"""(d0), the Robin
problem (7), (10) has the unique weak
generalized solution u € W (0O).

105



HN3BecTnsa Aatl'y. MatemaTtHka U MexaHuka. 2018. N2 4 (102)

Remark 5. The straightforward application of the
monotonicity method, as in [11, Chapter 2|, of the
Lions — Magenes Trace Theorem, and of the fact
that Wh(O) — WA (0) for a > 3, in the general
anisotropic case leads to the assertions of Proposition
2 with g € WYrbr-(90), h e W-1rrl(90),
H € WVPri(pO), and u € WhP+(0O) on the
places of g € WY (90), h € WY (90O),
H e W V'(90), and u € WL(O). (Here
Dy = i_nllinkpi.) Clearly, the anisotropic peculiarity

=1,...

is ignored in this approach.

2.2. Refinement of  regularity via
Theorem 1. Applying Theorem 1 we arrive at
a more precise conclusion than in Remark 5. This
conclusion is the second main result of the article.

Theorem 2. Let p = (p1,p2,...,pk), pi € (1,4+00)
(i=1,2,....k), px = __nllinkpi, Let v be defined by
(4) and f satisfy (6). Th)e }ollowing assertions hold
true

(i) Whenever g € WYP(00), the Dirichlet problem
(7), (8) has the unique weak generalized solution

ue WhP(0).

(ii) Whenever h € W~YP(90), the Neumann
problem (7), (9) has the unique weak generalized
solution uw € WHP(O).

(iii) Whenever $ € W=7P (90), the Robin problem
(7), (10) has the wunique weak generalized
solution uw € WHP(O).

Remark 6. Note that W1P(O) — WP+ (0). Hence
Theorem 2 extends the result in Remark 5 indeed.

Remark 7. The approach mentioned above can
be also applied to the p-parabolic problems. For
example, in O x (0,7), T = const > 0 consider the
non-stationary equation

k

up— Z divg, (

i=1

Pim27 w) + ulP e = f (11)

Ve, u

supplemented with the Cauchy data

ult—o = up on O, (12)

and either the Dirichlet condition (8), or the
Neumann condition (9), or the Robin condition
(10). Let the given functions in (11), (12), (8)—(10)
depend, in general, on ¢ (except for ug) and have the
following regularity:

f € LP(0,T;WHP(0)), ug € L*(0),
g € LP=(0,T; WYP(50)),
h € LP+(0,T; W~"P (00)),
§ € LP“(0,T; WYP(90)) + L9(O x {t = 0}).
Then each of the problems
e (11), (12), (8) (Cauchy — Dirichlet),
e (11), (12), (9) (Cauchy — Neumann),

e (11), (12), (10)  (Cauchy — Robin)
has the unique solution u € L>(0,T;L?(0)),
Vaz,u € LPi(O x (0,T)).
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