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Fast development of modern technologies of digital 
processing and speech recording leads to the fact 
that it is necessary to take into account the potential 
threats from the speech replay attacks. We propose our 
ensemble fusion replay attack detection system. It uses 
constant Q cepstral coefficients as speech features and 
short-time mean normalization for their preprocessing. 
The set of binary classifiers includes multiple Gaussian 
mixture models based Bayesian classifier, i-vector based 
Gaussian Probabilistic Linear Discriminant Analysis and 
XGBoost tree boosting algorithm. Fusion of scores was 
made by modified logistic regression algorithm from 
BOSARIS toolbox. ASV Spoof 2017 corpus is utilized 
in the experiments as the main database for anti-spoofing 
systems evaluation. Obtained results demonstrate that 
the proposed system can provide substantially better 
performance than the baseline Gaussian mixture model 
classifier. The pre-processing of cepstral features is crucial 
for the better performance of the system. High evaluation 
performance can be obtained using only few algorithms 
in a set. The attained value of equal error rate EER=12.44% 
for our fusion classifier is competitive with the best results 
obtained during last two years.

Keywords: automatic speaker verification; voice spoofing; 
replay attacks; universal background model; i-vector; prob-
abilistic linear discriminant analysis; tree boosting; model 
fusion.

Быстрое развитие современных технологий циф-
ровой обработки и записи речевых сигналов приве-
ло к тому, что стал актуальным учет потенциальных 
угроз, связанных с атаками на биометрические си-
стемы аутентификации, которые основаны на вос-
произведении речи. В работе предложен подход к де-
тектированию подобных атак при помощи ансамбля 
из нескольких классификаторов. В качестве инфор-
мативных признаков речевого сигнала применя-
лись Q-константные кепстральные коэффициенты. 
Проводилась их нормализация путем вычитания 
кепстрального среднего, оцениваемого на коротком 
временном интервале. Множество использованных 
бинарных классификаторов состояло из алгоритма 
на гауссовых смесях, гауссового вероятностного ли-
нейного дискриминантного анализа в сочетании с из-
влечением i-векторов речевых сигналов и алгоритма 
XGBoost. Смешивание осуществлялось при помощи 
модифицированного алгоритма логистической ре-
грессии. Качество работы предложенного подхода 
оказалось существенно выше базового метода, осно-
ванного на применении смесей гауссовых распреде-
лений. Дополнительное существенное улучшение ка-
чества было связано с предобработкой кепстральных 
коэффициентов. Было показано, что качество рабо-
ты, близкое к наилучшему, может быть достигнуто 
при смешивании небольшого числа классификаторов. 
Достигнутое значение частоты ошибок EER = 12.44% 
для смеси классификаторов близко к лучшим из до-
стигнутых к нынешнему моменту.
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ний, смешивание моделей.
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I. Introduction
Automatic speaker verification (ASV) is one 

of the key components in modern security systems. It has 
to meet requirements of robustness to changes in acoustic 
environment or changes in voice of target speakers. 
However, fast development of modern technologies 
of voice generation, digital processing and recording 
leads to the fact that it is necessary to take into account 
the potential threats from the so-called voice spoofing 
attacks [1, 2]. The first and most probable of the attack 
vectors is a replay attack. It is easy to be performed, and 
the potential threat it poses to ASV reliability has been 
confirmed in independent studies. The essence of this kind 
of attack is simple. The target speaker’s voice is recorded 
by some smart device. Then, this recording is replayed 
to an ASV system in the place of the genuine speech to 
unlock smartphone or take access to an application.

Detection of replay attacks using only acoustic 
characteristics of a given speech utterance is one of the most 
prominent strategies to spoofing countermeasures. This 
solution, in prospect, can easily be integrated in modern 
ASV systems. It is more convenient for users, because 
verification of their identity and verification of spoofing 
attack can be done for them in a single step. Although, 
this strategy is potentially problematic. The difficulty 
relates to unpredictable variation in quality of a replay 
attack. Recordings may contain significant additive or 
convolutional noise, or, in contrast, they can be made 
with high definition recording hardware. Effective 
spoofing detection system must consider both possibilities. 
It has to distinguish acoustic conditions in genuine and 
recorded voice, noise properties of the acoustic channel, 
and possible changes in voice spectral characteristics. 
The promotion of the development of effective replay 
attack countermeasures was the main motivation 
for organizing the ASV Spoof Challenge 2017 [1]. 
This challenge focuses on a standalone replay attack 
detection. The speech samples corpus for this task 
consists of nonreplayed (or “genuine”) utterances and 
their replayed (“spoofed”) versions. The former subset 
originates from the RedDots speech corpus [3], whereas 
the latter was collected by volunteers using smartphones 
and high definition portable recorders.

In this paper, we describe our replay attack detector. 
The main idea behind our system is the fusion of scores 
[4] given by a set of binary classification algorithms to 
obtain better classification results. We opted for some 
common speaker modelling techniques such as Gaussian 
mixture models (GMM) [5], GMM based universal 
background models (UBM) and i-vectors [6, 7]. The set 
of classifiers consists of multiple GMMs based classifier 
[1, 5], i-vector-Gaussian Probabilistic Linear Discriminant 
Analysis (GPLDA) [7] and highly popular in machine 
learning community tree boosting method XGBoost [8]. 
The most common choice of an acoustic feature for voice 
processing system is Mel frequency cepstral coefficients 

(MFCCs) [9]. Although, these features are not equally 
good for the tasks of speech recognition and for spoofing 
attack detection. In [10], constant-Q cepstral coefficients 
were proposed for spoofing detection task. We used them 
instead of MFCCs in our spoofing detection system.

The remainder of this paper is organized as follows. 
Section  2 introduces our feature extraction studies. 
The proposed set of classifiers and ensemble learning 
method are described in section  3. Experimental 
setup, performance measures and results are discussed 
in section 4. Section 5 concludes the paper.

II. Features
In modern ASV systems, speech features extraction 

is based on Fourier transform estimation and some 
succeeding transformation of obtained spectrum. 
This traditional approach is not necessarily ideal. 
Fourier transform is a powerful and widely used tool, 
but it imposes equally spaced bins in the time-frequency 
domain. This transformation lacks temporal resolution 
at higher frequencies. In other words, the selectivity 
increases when moving from low to high frequencies. 
In contrast, the constant Q transform (CQT), initially 
proposed in the field of music processing [11], employs 
geometrically spaced frequency bins. This ensures 
the constant selectivity factor across the entire spectrum.

In this study, we used the coupling of the constant Q 
transform with traditional cepstral analysis. These features 
are referred to as constant Q cepstral coefficients (CQCCs). 
Brown introduced them in [11] for the identification 
of musical instruments with a discrete success. Our 
version of feature extraction algorithm based on [10] 
performs a linearization of the frequency scale of the CQT, 
so that the orthogonality of the DCT basis is preserved. 
Experimental results in [10] showed that it has much 
better performance than traditional acoustic features 
for identification of synthesized and voice conversion 
spoofing speeches.

The extraction of CQCC features is done as follows 
[10]. First, the CQT of a time sequence x(n) is obtained. 
It is defined by:

 ( ) ( ) ( )*/2
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where k=1,2,..., K is the frequency bin index, * ( )ka n  is 
the complex conjugate of basis function ak(n) and Nk are 
variable window lengths. The basis functions ak(n) are 
complex-valued time-frequency atoms, defined according to:
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fk is the center frequency of the bin k, fs is the sampling rate, 
and Фk is a phase offset. The scaling factor C is given by:
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where w(t) is a window function (e.g. Hann window). 
The center frequencies fk are defined by:

                                 
1

12
k

B
kf f

−

= ,                                 (4)

where f1 is the center frequency of the lowest-frequency 
bin and B determines the number of bins per octave.
Cepstral analysis cannot be applied directly to ( )CQX k  
since the k bins in this sequence are geometrically spaced. 
This problem is solved by converting geometric frequency 
space to linear space. This procedure of signal 
reconstruction can be viewed as a downsampling 
operation over the first k bins in low frequencies and as an 
upsampling operation for the remaining K k−  bins 
in high frequencies. The result is a resampled sequence 

( )CQX k  at the uniform sample rate lF  given by:
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Then, constant Q cepstral coefficients (CQCCs) are 
extracted the same way as the MFCCs. They obtained 
from the inverse transformation of the logarithm 
of the spectrum according to:
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where � �1,2, , 1l L= … −  and where l are the newly 
resampled frequency bins.

Post-processing of CQCC features
The experimental results from [12] demonstrate that 

performing some feature normalization techniques can 
effectively improve performance of ASV system. Most of these 
techniques are applied in the cepstral domain. We used 
short-time mean normalization (STMN) (without variance 
normalization) for obtained constant Q cepstral coefficients. 
The normalized version of our features was given by:

                 ( ) ( ), , ( , )STMN stC i p C i p i pµ= −                  (7)

where i and p represent the frame index and cepstral 
coefficient index. Short-time mean ( , )st i pµ  in the sliding 
window with length L measured in frames was defined by:
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III. Classifiers
Gaussian Mixture Models (Baseline Classifier)
GMM is a weighted sum of N component probabilistic 

densities defined by:

                      ( ) ( )| � x
1

N
i ii
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=
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where x is a C-dimensional feature vector, , 1,2, ,ip i M= …  
represents mixture weights. Each component density 
with mean vector iµ  and covariance matrix i∑  is 
given by:
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Here mixture weights satisfy the constraint 
1

1N
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p
=
=∑ . 

GMM parameters are represented by 1{ , , }N
i i i ipλ µ == ∑ .

The model parameters were estimated using 
expectation maximization (EM) algorithm [5] for each 
class individually with maximum likelihood (ML) criteria. 
Two models replayλ  and genuineλ  were built. For the speech 
feature vector x the score was computed as follows:

    ( ) ( ) ( )| | .genuine replayscore x LLK x LLK xλ λ= −      (11)

Here ( )|LLK x λ  is the average likelihood of x given 
model λ.

              ( )|
1

1 log ( | ),T
ii

LLK x p x
T

λ λ
=

= ∑              (12)

where T represents a number of frames for a given speech 
signal.

i-Vectors and Gaussian PLDA
All “replayed” and “genuine” labelled training speech 

utterances were used to train a GMM-based universal 
background model (UBM) with parameters� UBMλ . This 
model was supposed to be a common label-unrelated 
speech acoustic space [5]. Given a UBM and training 
feature vectors of two models for “replayed” and “genuine” 
speech, acoustic spaces are derived. For this purpose, 
maximum a posteriori (MAP) adaptation method [5] 
was used. 

Then GMM mean super-vectors [13] were used 
as input feature vectors for modified joint-factor analysis 
(JFA) technique. Mean super-vector m  is defined as a 
column vector of  dimension CM  containing 
the concatenation of adapted GMM-UBM model mean 
vectors мi . It can be decomposed by JFA as follows [13]:

                             0m m Tw= + ,                               (13)

where m0 is a mean super-vector for all speakers, T is a 
total variability matrix, which is a projection matrix to 
the low-dimensional total variability space simultaneously 
captures the genuine, spoof and channel variability. Low-
dimensional i-vector w is a dense representation of all 
relevant discrimination information.

The backend of this classifier was a simplified 
GPLDA algorithm [7]. We used a log likelihood ratio 
of probabilities of two hypotheses. The first H1 denotes 
that two i-vectors belong to the same class and the second 
H0 is vice versa:
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Then, the score was a difference of mean LLR for x 
and all “genuine” labelled training utterances and mean 
LLR for x and all “replayed” labelled training utterances, 
which was defined by:

( ) ( ) ( )1 1,  ,
# #g rx G x Rg r

score x LLR x x LLR x x
G R∈ ∈

= −∑ ∑ ,  (15)

where G and R are the genuine and replayed speech 
utterance sets, #G and #R are their sizes.

Gradient Boosting
XGBoost is the state-of-the-art tree boosting algorithm. 

For input labelled examples, tree ensemble model uses K 
additive functions and predict the output [8]: 

                  ( )� � �
1

ˆ ,K
i k i kk

y f x f
=

=∑ ε  F ,                   (16)

where ( ) ( ){ } q xf x ω= =F  is the space of all possible 

CARTs (class i f icat ion and regress ion trees) , 
:  ,  m Tq T ω→R  Rε  is a structure of each tree, ω  — 

weights, T — number of leaves in the tree.
This algorithm can return the results in a form 

of probabilities of given classes. The score for the feature 
vector x with probability to be a genuine ( )genuinep x  was 
computed as follows:

                      ( ) log ( )genuinescore x p x=                     (17)

Fusion and Calibration
Model fusion is  a  mechanism to combine 

the advantages of different models to further improve 
the system performance. We use the state-of-the-art 
approach from Matlab Bosaris toolkit [4]. It provides a 

logistic regression solution, which can train combination 
weights to fuse multiple subsystems into a single 
subsystem, which outputs well-calibrated log-likelihood-
ratios. This functionality is provided by optimization 
of parameters of the following mapping:

                        ( ) ( )
1

F
i ii

l x a b s x
=

= +∑ ,                    (18)

where l(x) is the fused and calibrated output log-likelihood 
ratio for x, F is a set of subsystems to be fused, ( )is x  is 
the score of subsystem i [4]. The parameters to be 
optimized are the scalar offset a the scalar combination 
weights bi.

IV. Experiments
Dataset description and performance metrics
In this study, we carried out our experiments using 

ASV Spoof 2017 corpus [1], which is provided as a part 
of spoofing challenge. It originates from the RedDots 
corpus [3], which was collected by volunteers from across 
the globe. Replayed speech utterances were played through 
one of the 15 transducers of varying quality and recorded 
by 16 different devices in various combinations.

The database is partitioned into three subsets: 
training, development, and evaluation. Details of numbers 
of utterances in each of them are presented in Table I. 
The first two subsets were provided for the design of replay 
countermeasures. Besides the primary labels (genuine/
replayed), each audio file in the training and development 
data sets was also provided with information of the text 
context, speaker, recording environment, playback device, 
and recording device. Only some of the replay conditions 
would be the same as those in the training and/or 
development parts. Majority of the replay attacks would 
originate from other unseen configurations than those 
in the training and development parts.

Table I
Number of Samples in ASV Spoof 2017 Database

Type of sample
Subset

Train Development Evaluation
“genuine” speech 1508 760 1298
“replayed”speech 1508 950 12000

For the training, we used training and development 
subsets of ASV Spoof Challenge 2017 dataset. Since this 
competition was over, we had an opportunity to use known 
labels of the evaluation subset for performance evaluation 
of our system. We used only the primary labels (“genuine”-
“replayed”) for training and testing phases.

Performance evaluation
The primary performance measure is the equal 

error rate (EER) [1, 4]. We obtain the scores from our 
classification algorithms. Higher scores are assumed 

to correspond to genuine speech. Let ( )faP θ  and 
( )missP θ  denote the false alarm and miss rates at score 

threshold θ:

        ( ) y�
y�

#{   } 
#{  }fa

re la trials with scoreP
total re la trials

ρ θ
θ

ρ
>

=            (19)

     ( ) �
#{    } 
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total genuinetrials
θ

θ
<

=         (20)
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These values ( )faP θ  and ( )missP θ  are monotonically 
decreasing and increasing functions of θ. EER corresponds 
to the value of θ at which ( ) ( )fa missP Pθ θ= . EER was 
estimated using the convex hull method available 
in Bosaris toolkit [4]. 

Experimental Setup
As stated above, CQCC features were used in our 

experiments. For the feature extraction, we followed 
the typical settings of CQCC extraction function 
introduced in [10]. The speech signal was analyzed 
using an overlapping 25-ms Hamming window every 
10-ms. We use 30 cepstral coefficients with additional 
delta and delta-delta coefficients. For the half of our 
models we use short-time mean normalization. Another 
half was trained on CQCCs and deltas without post-
processing.

GMMs were trained with 512 components and 
the diagonal covariance matrixes. The dimensionality 
of i-vectors and the dimensionality of eigenvoice subspace 
for GPLDA method was 100 and 90 respectively. XGBoost 
algorithm was used with default settings (number of trees 
was 1000, maximum depth was 6).

All feature extraction and classification except 
XGBoost were carried out in MATLAB environment. 
For GMM-based classification and i-vector extraction we 
used MSR Identity Toolkit [14], fusion and performance 
measures were done by Bosaris toolkit. For boosting we 
used the XGBoost python wrapper.

Experimental Results
The detection error trade-off (DET) curves 

for all classifiers and their fusions are shown in Figure 1. 
The comparison of performances is demonstrated in Table II. 

Fig. 1. Detection error trade-off profiles for all models.

Table II
Comparison of models

Classifier EER, %
GMM (Baseline) 22.47
i-vector-GPLDA 20.00
i-vector-XGBoost 19.42
GMM-STMN 16.70
i-vector-GPLDA-STMN 13.81
i-vector-XGBoost-STMN 15.56
Fusion of
GMM + i-vector-XGBoost + i-vector-GPLDA-STMN 12.69

Fusion of all models 12.44
1st place in ASV Spoof Challenge 2017 [1] 6.73
2nd place in ASV Spoof Challenge 2017 [1] 12.34
3rd place in ASV Spoof Challenge 2017 [1] 14.03
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We had two versions of used classification algorithms. 
First three were trained with nonnormalized CQCC 
features, another three were trained with cepstral 
mean subtracted features. Results show that all models 
with STMN CQCCs get much better performance 
in comparison with their nonnormalized counterparts. 
The greatest increase in performance was shown 
by i-Vector-GPLDA classification algorithm. XGBoost 
was not the best performer in our set.

The best performance was obtained by combination 
of all classifiers. It is surprising that close EER value 
could be achieved only by fusing three classifiers 
(GMM + i-vector-XGBoost + i-vector-GPLDA-STMN). 

For comparison, top three performance results of ASV 
Spoof Challenge 2017 [1] are given in Table 2.

V. Conclusion
This work shows that the proposed ensemble fusion 

system can provide substantially better performance than 
the GMM baseline for detection the audio replay attacks. 
The normalization of cepstral features is crucial for better 
performance of replay attack detecting algorithms. High 
evaluation performance could be obtained using only few 
algorithms in a set. The achieved value of EER=12.44% 
for our fusion classifier is competitive with the best results 
obtained during ASV Spoof Challenge 2017.
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