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Fast development of modern technologies of digital
processing and speech recording leads to the fact
that it is necessary to take into account the potential
threats from the speech replay attacks. We propose our
ensemble fusion replay attack detection system. It uses
constant Q cepstral coefficients as speech features and
short-time mean normalization for their preprocessing.
The set of binary classifiers includes multiple Gaussian
mixture models based Bayesian classifier, i-vector based
Gaussian Probabilistic Linear Discriminant Analysis and
XGBoost tree boosting algorithm. Fusion of scores was
made by modified logistic regression algorithm from
BOSARIS toolbox. ASV Spoof 2017 corpus is utilized
in the experiments as the main database for anti-spoofing
systems evaluation. Obtained results demonstrate that
the proposed system can provide substantially better
performance than the baseline Gaussian mixture model
classifier. The pre-processing of cepstral features is crucial
for the better performance of the system. High evaluation
performance can be obtained using only few algorithms
in a set. The attained value of equal error rate EER=12.44%
for our fusion classifier is competitive with the best results
obtained during last two years.
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bricTpoe pasBuTIe COBPEMEHHBIX TeXHOIOTIT -
POBOIT 06pPAbOTKM M 3aINCK PEUEBBIX CUTHAIOB IPUBe-
JIO K TOMY, YTO CTaJI aKTya/IbHBIM y4eT HOTEeHIIMaIbHBIX
yIpo3, CBA3aHHBIX ¢ aTaKaMJ Ha 61IOMeTpUYecKIe CIi-
CTeMbl ayTeHTU(NKAL[UY, KOTOPble OCHOBAHBI Ha BOC-
mpousBefeHnu pedil. B pabore mpeaoxeH MOAXOL K fie-
TEKTMPOBAHNUIO MTOFOOHBIX aTaK [P ITOMOLIY aHCAMOIIs
U3 HEeCKOJIbKMX KyIaccudukaropos. B kadectBe nHpOp-
MaTUBHBIX IIPM3HAKOB Peu4eBOr0 CUTHa/lIa IpUMEHH-
mnch Q-KOHCTaHTHBIE KeIICTpPaIbHble K09 PIULIMEHTEL
[TpoBopmmach X HOpMaIM3aUMs IIyTeM BbIYMTAHNA
KeIICTPA/IbHOTO CPeJHET0, OLEHNBAEMOr0 Ha KOPOTKOM
BpPeMEHHOM MHTepBajie. MHOXeCTBO UCIIOIb30BAHHBIX
OUMHAPHBIX KIaCCU(PUKATOPOB COCTOSTIO U3 AJITOPUTMA
Ha I'ayCCOBBIX CMeCHX, FayCCOBOTO BEPOATHOCTHOTO /M-
HEeITHOTO JYICKPUMIHAHTHOTO aHAa/IN3a B COYCTAHVN C 13-
BJIeYCHIEM i-BEeKTOPOB PEYeBBIX CUTHAJIOB M aJITOPUTMA
XGBoost. CMemnBaHue 0CyLeCTB/IAIOCh IPU IOMOIIN
MOAM(ULIMPOBAHHOTO AJITOPUTMA JIOTUCTUYECKON pe-
rpeccun. KagecTBo paboTsI pefIoXKeHHOTO MOfXO0Aa
0Ka3aJI0Ch CYIIeCTBEHHO BbIle 6a30BOr0 MeTOJa, OCHO-
BAaHHOTO Ha IIPYMEHEHUN CMecell TayCCOBBIX pacIpefe-
nenuii. [IononHNTeNbHOE CYIIeCTBEHHOE YIyqlIeHNe Ka-
YecTBa OBIIO CBSI3AHO C IPeF0OPabOTKOI KeIICTPaTbHbIX
k03¢ ¢puimeHTOB. BbIIO MOKA3aHO, YTO Ka4ecTBO pabdo-
TBI, 6/113K0O€ K HAWIYYIIEMY, MOXET OBITh JOCTUTHYTO
TIPY CMENIMBAHNM HEOOTIBIIOTO IMCTA KITACCUPUKATOPOB.
TocturayToe sHayeHne yacToTbl ommbok EER = 12.44%
IUTSL CMeCH KacCu(UKATOPOB O/IM3KO K YULINM U3 KO-
CTUTHYTBIX K HBIHEITHEMY MOMEHTY.

Kntouesvie cnosa: Bepudukanus [MKTOPOB, MOfENKA IO~

JI0Ca, aTaKM BOCIIPOM3BENEHNEM, YHIBEPCA/IbHAA 6a3oBas

MOJI€/Ib, i-BEKTOP, BEPOATHOCTHBII TMHENHDI JUCKPUMMU-

HAHTHbIII aHa/IN3, OYCTVHT Ha epeBbsIX IPUHATIS pellle-

HU, CMEIIVIBAaHNE MOJECIEN.
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I. Introduction

Automatic speaker verification (ASV) is one
of the key components in modern security systems. It has
to meet requirements of robustness to changes in acoustic
environment or changes in voice of target speakers.
However, fast development of modern technologies
of voice generation, digital processing and recording
leads to the fact that it is necessary to take into account
the potential threats from the so-called voice spoofing
attacks [1, 2]. The first and most probable of the attack
vectors is a replay attack. It is easy to be performed, and
the potential threat it poses to ASV reliability has been
confirmed in independent studies. The essence of this kind
of attack is simple. The target speaker’s voice is recorded
by some smart device. Then, this recording is replayed
to an ASV system in the place of the genuine speech to
unlock smartphone or take access to an application.

Detection of replay attacks using only acoustic
characteristics of a given speech utterance is one of the most
prominent strategies to spoofing countermeasures. This
solution, in prospect, can easily be integrated in modern
ASV systems. It is more convenient for users, because
verification of their identity and verification of spoofing
attack can be done for them in a single step. Although,
this strategy is potentially problematic. The difficulty
relates to unpredictable variation in quality of a replay
attack. Recordings may contain significant additive or
convolutional noise, or, in contrast, they can be made
with high definition recording hardware. Effective
spoofing detection system must consider both possibilities.
It has to distinguish acoustic conditions in genuine and
recorded voice, noise properties of the acoustic channel,
and possible changes in voice spectral characteristics.
The promotion of the development of effective replay
attack countermeasures was the main motivation
for organizing the ASV Spoof Challenge 2017 [1].
This challenge focuses on a standalone replay attack
detection. The speech samples corpus for this task
consists of nonreplayed (or “genuine”) utterances and
their replayed (“spoofed”) versions. The former subset
originates from the RedDots speech corpus [3], whereas
the latter was collected by volunteers using smartphones
and high definition portable recorders.

In this paper, we describe our replay attack detector.
The main idea behind our system is the fusion of scores
[4] given by a set of binary classification algorithms to
obtain better classification results. We opted for some
common speaker modelling techniques such as Gaussian
mixture models (GMM) [5], GMM based universal
background models (UBM) and i-vectors [6, 7]. The set
of classifiers consists of multiple GMMs based classifier
[1, 5], i-vector-Gaussian Probabilistic Linear Discriminant
Analysis (GPLDA) [7] and highly popular in machine
learning community tree boosting method XGBoost [8].
The most common choice of an acoustic feature for voice
processing system is Mel frequency cepstral coefficients

(MFCCs) [9]. Although, these features are not equally
good for the tasks of speech recognition and for spoofing
attack detection. In [10], constant-Q cepstral coefficients
were proposed for spoofing detection task. We used them
instead of MFCCs in our spoofing detection system.

The remainder of this paper is organized as follows.
Section 2 introduces our feature extraction studies.
The proposed set of classifiers and ensemble learning
method are described in section 3. Experimental
setup, performance measures and results are discussed
in section 4. Section 5 concludes the paper.

II. Features

In modern ASV systems, speech features extraction
is based on Fourier transform estimation and some
succeeding transformation of obtained spectrum.
This traditional approach is not necessarily ideal.
Fourier transform is a powerful and widely used tool,
but it imposes equally spaced bins in the time-frequency
domain. This transformation lacks temporal resolution
at higher frequencies. In other words, the selectivity
increases when moving from low to high frequencies.
In contrast, the constant Q transform (CQT), initially
proposed in the field of music processing [11], employs
geometrically spaced frequency bins. This ensures
the constant selectivity factor across the entire spectrum.

In this study, we used the coupling of the constant Q
transform with traditional cepstral analysis. These features
are referred to as constant Q cepstral coefficients (CQCCs).
Brown introduced them in [11] for the identification
of musical instruments with a discrete success. Our
version of feature extraction algorithm based on [10]
performs a linearization of the frequency scale of the CQT,
so that the orthogonality of the DCT basis is preserved.
Experimental results in [10] showed that it has much
better performance than traditional acoustic features
for identification of synthesized and voice conversion
spoofing speeches.

The extraction of CQCC features is done as follows
[10]. First, the CQT of a time sequence x(n) is obtained.
It is defined by:

n+[N /2] N
X (k,n)= Zj:ﬂi’{‘Nk/zlx(])ak (j—n+N./12), (1)
where k=1,2,..., K is the frequency bin index, a;{ (n) is
the complex conjugate of basis function a,(n) and N, are
variable window lengths. The basis functions a,(n) are
complex-valued time-frequency atoms, defined according to:
1 n . f k
a, (n)=—()expliCQmrn—+ )] . 2

«(n) C(Nk) pli( 7 9] )
fis the center frequency of the bin k, f, is the sampling rate,
and @, is a phase offset. The scaling factor Cis given by:

N, /2 l
C=3M w M] ®

N

k
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where w(t) is a window function (e.g. Hann window).
The center frequencies f, are defined by:

fi=12

where f, is the center frequency of the lowest-frequency
bin and B determines the number of bins per octave.
Cepstral analysis cannot be applied directly to X“?(k)
since the k bins in this sequence are geometrically spaced.
This problem is solved by converting geometric frequency
space to linear space. This procedure of signal
reconstruction can be viewed as a downsampling
operation over the first k bins in low frequencies and as an
upsampling operation for the remaining K —k bins
in high frequencies. The result is a resampled sequence
X“(k) at the uniform sample rate F given by:

A

Then, constant Q cepstral coefficients (CQCCs) are
extracted the same way as the MFCCs. They obtained
from the inverse transformation of the logarithm
of the spectrum according to:

=)
B

(4)

>

E —1
E=|f|2F —1

(5)

pu=he
CQCC(p):Z;log|XCQ(l)| cos L2 (6)

>

where [=12,..,L—1 and where | are the newly
resampled frequency bins.
Post-processing of CQCC features
The experimental results from [12] demonstrate that
performing some feature normalization techniques can
effectively improve performance of ASV system. Most of these
techniques are applied in the cepstral domain. We used
short-time mean normalization (STMN) (without variance
normalization) for obtained constant Q cepstral coefficients.
The normalized version of our features was given by:
Coran (i’P> = C(i’P)flus: @i,p) (7)
where i and p represent the frame index and cepstral
coefficient index. Short-time mean 4, (i, p) in the sliding
window with length L measured in frames was defined by:

. 1 i+L/2 .
o (ip) =72, Clip) 8)

III. Classifiers

Gaussian Mixture Models (Baseline Classifier)

GMM is a weighted sum of N component probabilistic
densities defined by:

p(A) =" pbi(x), ©)

109

where x is a C-dimensional feature vector, p,,i =1,2,...,M
represents mixture weights. Each component density
with mean vector p, and covariance matrix >, is
given by:

b,(x)

i

= o exp{—l(x =) (= ui)}- (10)
(27T)C/2 2

!

Here mixture weights satisfy the constraint ZNZI p, =1

GMM parameters are represented by A ={p,,1,,2_}1 .
The model parameters were estimated using
expectation maximization (EM) algorithm [5] for each
class individually with maximum likelihood (ML) criteria.
Two models A, and A were built. For the speech

replay genuine

feature vector x the score was computed as follows:

score(x) = LLK(x|/\

genuine )

—LLK(x|\,,, ) (1)

Here LLK(x|)) is the average likelihood of x given
model \.
I
LLK (x|)) :FZM log p(x, | \), (12)
where T represents a number of frames for a given speech
signal.

i-Vectors and Gaussian PLDA

All “replayed” and “genuine” labelled training speech
utterances were used to train a GMM-based universal
background model (UBM) with parameters )\ ,,, . This
model was supposed to be a common label-unrelated
speech acoustic space [5]. Given a UBM and training
feature vectors of two models for “replayed” and “genuine”
speech, acoustic spaces are derived. For this purpose,
maximum a posteriori (MAP) adaptation method [5]
was used.

Then GMM mean super-vectors [13] were used
as input feature vectors for modified joint-factor analysis
(JFA) technique. Mean super-vector m is defined as a
column vector of dimension CM containing
the concatenation of adapted GMM-UBM model mean
vectors M, . It can be decomposed by JFA as follows [13]:

m=m, +Tw, (13)
where m is a mean super-vector for all speakers, T is a
total variability matrix, which is a projection matrix to
the low-dimensional total variability space simultaneously
captures the genuine, spoof and channel variability. Low-
dimensional i-vector w is a dense representation of all
relevant discrimination information.

The backend of this classifier was a simplified
GPLDA algorithm [7]. We used a log likelihood ratio
of probabilities of two hypotheses. The first H denotes
that two i-vectors belong to the same class and the second
H, is vice versa:
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P(x
P(x

target ’xtesr | Hl )

| Hy)P(x,, | H,)

LLR(xtarget > xtest ) = log N (14)

target test

Then, the score was a difference of mean LLR for x
and all “genuine” labelled training utterances and mean
LLR for x and all “replayed” labelled training utterances,
which was defined by:

score(x) = %Z% EGLLR(xg,x) f#ZxVGRLLR@cr %), (15)

where G and R are the genuine and replayed speech
utterance sets, #G and #R are their sizes.

Gradient Boosting

XGBoost is the state-of-the-art tree boosting algorithm.
For input labelled examples, tree ensemble model uses K
additive functions and predict the output [8]:

Ji=2_" filx)fieF,

where F = {f(x) :wq(x)} is the space of all possible

(16)

CARTs (classification and regression trees),
q:R"—T,we R" is a structure of each tree, w —
weights, T — number of leaves in the tree.

This algorithm can return the results in a form
of probabilities of given classes. The score for the feature
vector x with probability to be a genuine p,,,, (x) was
computed as follows:

score(x) = log P genine (X) (17)

Fusion and Calibration

Model fusion is a mechanism to combine
the advantages of different models to further improve
the system performance. We use the state-of-the-art
approach from Matlab Bosaris toolkit [4]. It provides a

logistic regression solution, which can train combination
weights to fuse multiple subsystems into a single
subsystem, which outputs well-calibrated log-likelihood-
ratios. This functionality is provided by optimization
of parameters of the following mapping:

l(x) —a+ Z;bisi (x),

where I(x) is the fused and calibrated output log-likelihood
ratio for x, F is a set of subsystems to be fused, s,(x) is
the score of subsystem i [4]. The parameters to be
optimized are the scalar offset a the scalar combination
weights b..

(18)

IV. Experiments

Dataset description and performance metrics

In this study, we carried out our experiments using
ASV Spoof 2017 corpus [1], which is provided as a part
of spoofing challenge. It originates from the RedDots
corpus [3], which was collected by volunteers from across
the globe. Replayed speech utterances were played through
one of the 15 transducers of varying quality and recorded
by 16 different devices in various combinations.

The database is partitioned into three subsets:
training, development, and evaluation. Details of numbers
of utterances in each of them are presented in Table I.
The first two subsets were provided for the design of replay
countermeasures. Besides the primary labels (genuine/
replayed), each audio file in the training and development
data sets was also provided with information of the text
context, speaker, recording environment, playback device,
and recording device. Only some of the replay conditions
would be the same as those in the training and/or
development parts. Majority of the replay attacks would
originate from other unseen configurations than those
in the training and development parts.

Table I
Number of Samples in ASV Spoof 2017 Database
Type of sample Subset
Train Development Evaluation
“genuine” speech 1508 760 1298
“replayed’speech 1508 950 12000

For the training, we used training and development
subsets of ASV Spoof Challenge 2017 dataset. Since this
competition was over, we had an opportunity to use known
labels of the evaluation subset for performance evaluation
of our system. We used only the primary labels (“genuine”-
“replayed”) for training and testing phases.

Performance evaluation

The primary performance measure is the equal
error rate (EER) [1, 4]. We obtain the scores from our
classification algorithms. Higher scores are assumed

to correspond to genuine speech. Let P, (¢) and
P,..(0) denote the false alarm and miss rates at score

threshold 6:

(0) _ #{replay trials with score > 0} (19)
A #{totalreplay trials}
4 ) . .
- (0) _ {genuinetrials with score < 0} (20)

#{total genuinetrials}
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These values P, () and P (6) are monotonically
decreasing and increasing functions of 6. EER corresponds
to the value of 6 at which P, (0)=P,, (0). EER was
estimated using the convex hull method available
in Bosaris toolkit [4].

Experimental Setup

As stated above, CQCC features were used in our
experiments. For the feature extraction, we followed
the typical settings of CQCC extraction function
introduced in [10]. The speech signal was analyzed
using an overlapping 25-ms Hamming window every
10-ms. We use 30 cepstral coefficients with additional
delta and delta-delta coefficients. For the half of our
models we use short-time mean normalization. Another
half was trained on CQCCs and deltas without post-
processing.

GMMs were trained with 512 components and
the diagonal covariance matrixes. The dimensionality
of i-vectors and the dimensionality of eigenvoice subspace
for GPLDA method was 100 and 90 respectively. XGBoost
algorithm was used with default settings (number of trees
was 1000, maximum depth was 6).

All feature extraction and classification except
XGBoost were carried out in MATLAB environment.
For GMM-based classification and i-vector extraction we
used MSR Identity Toolkit [14], fusion and performance
measures were done by Bosaris toolkit. For boosting we
used the XGBoost python wrapper.

Experimental Results

The detection error trade-off (DET) curves
for all classifiers and their fusions are shown in Figure 1.
The comparison of performances is demonstrated in Table I1.
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Fig. 1. Detection error trade-oft profiles for all models.

Table II
Comparison of models
Classifier EER, %

GMM (Baseline) 22.47
i-vector-GPLDA 20.00
i-vector-XGBoost 19.42
GMM-STMN 16.70
i-vector-GPLDA-STMN 13.81
i-vector-XGBoost-STMN 15.56
Fusion of . 12.69
GMM + i-vector-XGBoost + i-vector-GPLDA-STMN

Fusion of all models 12.44
Ist place in ASV Spoof Challenge 2017 [1] 6.73
2nd place in ASV Spoof Challenge 2017 [1] 12.34
3rd place in ASV Spoof Challenge 2017 [1] 14.03
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We had two versions of used classification algorithms.
First three were trained with nonnormalized CQCC
features, another three were trained with cepstral
mean subtracted features. Results show that all models
with STMN CQCCs get much better performance
in comparison with their nonnormalized counterparts.
The greatest increase in performance was shown
by i-Vector-GPLDA classification algorithm. XGBoost
was not the best performer in our set.

The best performance was obtained by combination
of all classifiers. It is surprising that close EER value
could be achieved only by fusing three classifiers
(GMM + i-vector-XGBoost + i-vector-GPLDA-STMN).

For comparison, top three performance results of ASV
Spoof Challenge 2017 [1] are given in Table 2.

V. Conclusion

This work shows that the proposed ensemble fusion
system can provide substantially better performance than
the GMM baseline for detection the audio replay attacks.
The normalization of cepstral features is crucial for better
performance of replay attack detecting algorithms. High
evaluation performance could be obtained using only few
algorithms in a set. The achieved value of EER=12.44%
for our fusion classifier is competitive with the best results
obtained during ASV Spoof Challenge 2017.
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